期刊文献+

多目标进化算法研究进展 被引量:52

Progress of Research on Multi-Objective Evolutionary Algorithms
在线阅读 下载PDF
导出
摘要 进化算法具有本质上并行、不需要求导或其他辅助知识、一次运行产生多个解和简单易于实现等优点,被视为求解多目标优化问题的有效方法,目前已经形成了各种不同的多目标进化算法(MOEA)。本文首先回顾了多目标进化算法的研究起源,给出了多目标优化问题的数学描述;其次,详细分析了第一代多目标进化算法,其主要特征是简单易于实现,包括NSGA、NPGA、MOGA等,并指出这一代算法研究的成绩与不足;然后,对第二代多目标进化算法作了全面分析,指出其特征是强调效率,以精英保留策略为实现机制,且对SPEA、PAES、NSGAII、NPGA2、PESA、Micro-GA等方法进行分析比较,还对这一代的研究作了总结;最后,对多目标进化算法的研究趋势作了展望和预测。 Evolutionary Algorithms (EAs) have become popular in multi-objective optimization problems, which are parallel in nature and don't require differentiability of objective functions and constraints, and also which deal with a set of possible solutions in a single furl Many Multi-Objective Evolutionary Algorithms (MOEAs) are proposed at present. Firstly, this paper reviews the origin of MOEAs; secondly, the first generation MOEAs are analyzed, which are characterized by simplicity, such as NSGA, NPGA, MOGA and so on, and the achievements and shortage during the first generation are also discussed. Thirdly, the MOEAs developed during the second generation, including SPEA, PAES,NSGA Ⅱ,NPGA2,PESA,Micro-GA and etc. , are detailed and compared, which use elitism to improve the efficiency. At last, some important research areas of MOEA are addressed.
作者 郑向伟 刘弘
出处 《计算机科学》 CSCD 北大核心 2007年第7期187-192,共6页 Computer Science
基金 国家自然科学基金(69975010 60374054) 山东省自然科学基金(Y2003G01)的支持
关键词 多目标优化 多目标进化算法 Pareto非劣最优 精英保留策略 Multi-objective optimization, MOEA, Pareto non-dominance, Elitism
  • 相关文献

参考文献40

  • 1Zitzler E, Laumanns M, Bleuler S. A tutorial on evolutionary multiobjective optimization. In.. Srensen K, Gandibleux X, Sevaux M, et al. ed. Meta-heuristics for Multiobjective Optimization. Lecture Notes in Economics and Mathematical Systems, Sprnger, 2004,35 : 3-37
  • 2谢涛,陈火旺,康立山.多目标优化的演化算法[J].计算机学报,2003,26(8):997-1003. 被引量:127
  • 3Coello C A C. An Updated survey of evolutionary multiobjective optimization techniques: State of the art and future trends. In: Proceedings of the 1999 Congress on Evolutionary Computation, Washington D C,1999. 3-13
  • 4Rosenberg R S. Simulation of genetic populations with biochemical properties:[PhD thesis]. Ann Harbor, Michigan: University of Michigan, 1967
  • 5David S J. Multiple Objective Optimization with Vector Evaluated Genetic Algorithms. In: Proceedings of the First International Conference on Genetic Algorithms, Lawrence Erlbaum, 1985.93-100
  • 6Coello C A C. Twenty Years of Evolutionary Multi-objective Optimization: A Historical View of the Field. IEEE Computational Intelligence Magazine, 2006,1 (1) : 28-36
  • 7Fonseca C M, Fleming P J. An Overview of Evolutionary Algorithms in Multi-objective Optimization[J].Evolutionary Computation, 1995, 3(1):1-16
  • 8Goldberg D E. Genetic Algorithms in Search, Optimization and Machine Learning. Reading, Massachusetts: Addison-Wesley Publishing Company, 1989
  • 9Fonseca C M, Fleming P J. Genetic Algorithms for Multi-objective Optimization: Formulation, Discussion and Generalization. In: Forrest S,ed. oceedings of the Fifth International Conference on Genetic Algorithms, pages San Marco, California, 1993. 416-423
  • 10Srinivas N, Deb K. Multiobjective Optimization Using Nondominated Sorting in Genetic Algorithms. Evolutionary Computation, 1994,2(3):221-248

二级参考文献29

  • 1Charnes A, Cooper W W. Management Models and Industrial Applications of Linear Programming, Volume 1. New York:John Wiley, 1961.
  • 2Ijiri Y. Management Goals and Accounting for Control. Amsterdan: North Holland, 1965.
  • 3Hajela P, Lin C Y. Genetic search strategies in multicriterion optimal design. Structural Optimization, 1992, 4 : 99 - 107.
  • 4Chen Y L, Liu C C. Multiobjective VAR planning using the goal-attainment method, IEE Proceedings on Generation,Transmission and Distribution, 1994,141 (3) :227 -232.
  • 5Coello C A C, Christiansen A D, Aguirre A H. Using a new GA- based multiobjective optimization technique for the design of robot arms. Robotica, 1998,16:401-414.
  • 6Fujita K, Hirokawa N, Akagi S, Kitamura S, Yokohata H.Multi-objective optimal design of automotive engine using genetic algorithm. In: Proceedings of DETC'98-ASME Design Engineering Technical Conferences, 1998.
  • 7Cvetkovic D, Parmee I C. Genetic algorithm-based multi-objective optimization and conceptual engineering design, Washington DC, 1999. 29-36.
  • 8Zitzler E, Thiele L. Multiobjective optimization using evolutionary algorithms-a comparative case study. In: Eiben A E.Back T, Schoenauer M, Schwefel H P eds. Parallel Problem Solving from Nature, Berlin, Germany: Springer, 1998. 292-301.
  • 9Knowles J, Corne D. The Pareto archived evolution strategy:A new baseline algorithm for multiobjective optimization. In:Proceedings of the 1999 Congress on Evolutionary Computation, Washington DC, 1999. 98-105.
  • 10Coello C A C, Christiansen A D. Two new GA- based methods for multiobjective optimization. Civil Engineering Systems,1998, 15(3) :207-243.

共引文献126

同被引文献462

引证文献52

二级引证文献701

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部