期刊文献+

基于数据驱动的铜闪速熔炼过程操作模式优化及应用 被引量:40

Data-driven Operational-pattern Optimization for Copper Flash Smelting Process
在线阅读 下载PDF
导出
摘要 针对铜闪速熔炼过程工艺指标无法在线检测、过程建模及优化控制困难的问题,研究了基于数据驱动的操作模式优化方法.论文在铜闪速熔炼过程特点分析的基础上,定义了基于数据驱动的操作模式优化的基本概念,提出了基于数据驱动的操作模式优化控制框架,研究了基于数据的冰铜温度、冰铜品位、渣中铁硅比的工艺指标预测模型、炉况的综合评价模型及闪速熔炼过程的操作模式优化.基于大量工业运行数据和炉况评价模型构建优化操作模式库,提出了将模糊C均值聚类与混沌伪并行遗传算法相结合的匹配算法,从优化操作模式库中寻找与当前工况相匹配的最优操作模式,从而实现熔炼过程的优化控制.在铜闪速熔炼生产中的实际应用证明了该方法的有效性. Considering the difficulties of modeling, online-measurement of technical indexes, and optimal control in copper flash smelting process, a data-driven operational-pattern optimization method is presented. Firstly, the copper flash smelting process is analyzed, basic concepts about data-driven operational-pattern are defined and the frame of data- driven operational pattern optimization is proposed. Secondly, the data-driven prediction models of matte temperature, matter grade and ratio of Fe to SiO2 are established, the overall evaluation model of flash smelter is proposed and operational-pattern optimization for copper flash smelting process is described. Thirdly, an optimized operational-pattern base is constructed based on lots of industrial running data and the overall evaluation model. Then, a matching algorithm combining fuzzy C-means cluster with chaos pseudo parallel genetic Mgorithm is proposed to mine an optimal operational pattern from the optimized operational-pattern base to implement the optimal control of the smelting process. The practical running results in copper flash smelting process show its effectiveness.
出处 《自动化学报》 EI CSCD 北大核心 2009年第6期717-724,共8页 Acta Automatica Sinica
基金 国家自然科学基金(60634020 60874069) 教育部高校博士点专项科研基金(200805331104)资助~~
关键词 数据驱动 铜闪速熔炼 操作模式 操作模式优化 Data-driven, copper flash smelting, operational-pattern, operational-pattern optimization
  • 相关文献

参考文献7

二级参考文献31

  • 1严爱军,柴天佑.竖炉燃烧室温度的智能控制方法及应用[J].控制工程,2005,12(4):305-309. 被引量:15
  • 2严爱军,岳恒,赵大勇,柴天佑.一类复杂工业过程的智能预报模型及其应用[J].控制与决策,2005,20(7):794-797. 被引量:14
  • 3严爱军,柴天佑.磁选管回收率智能混合预报方法[J].信息与控制,2005,34(6):759-764. 被引量:7
  • 4[2]GOMM J B, YU D L. Selecting radial basis function network centers with recursive orthogonal least squares training [J]. IEEE Trans on Neural Networks, 2000, 11(2): 306-314.
  • 5[3]RUANO A E, FERREIRA P M, CABRITA C, et al. Training neural networks and neural-fuzzzy systems: a unified view [C]∥Proc of the 15th IFAC. Barcelona: Elsevier Science, 2002.
  • 6[6]KODKINEN J, YLINIEMI L, LEIVISK K. Fuzzy modeling of a rotary dryer [C]∥Preprints of the IFAC Workshop. Finland: Elsevier Science, 2000:166-171.
  • 7[7]WU M, NAKANO M, SHE J H. A model-based expert control strategy using neural networks for the coal blending process in an iron and steel plant [J]. Expert Systems with Applications, 1999, 6(16): 271-281.
  • 8[8]HAGAN M T, DEMOUTH H B, BEALE M H. Neural Network Design [M]. Boston: PWS Publishing Company, 1996.
  • 9[9]HAGAN M T, MENHAJ M. Training feed forward network with the Marquardt algorithm [J]. IEEE Trans on Neural Networks, 1994, 5(6): 989-993.
  • 10NAGAMORI M, MACKEY P J. Thermodynamics of copper matte converting-part Ⅰ: Fundamentals of the Noranda process [ J]. Metallurgy Transactions, 1978,9B(2) :255 - 271.

共引文献58

同被引文献480

引证文献40

二级引证文献267

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部