期刊文献+

基于改进的QBC和CS-SVM的故障检测 被引量:17

Fault detection based on modified QBC and CS-SVM
原文传递
导出
摘要 针对复杂工业过程样本集中的类不平衡、样本标注代价昂贵和样本孤点的问题,研究基于委员会投票选择(MQBC)和代价敏感支持向量机(CS-SVM)的故障检测方法.给出未标注样本信息度的定义,提出改进的委员会投票选择算法.主动代价敏感学习通过MQBC选择信息度高的未标注样本对其标注并添加到训练集.CS-SVM将不同类样本的误分类赋予不同的误分类代价,从而提高CS-SVM的故障检测率.最后,以铜闪速熔炼过程为例,实验结果验证了所提出方法的有效性. Fault detection based on modified query by committee(MQBC) and cost-sensitive support vector machine(CS- SVM) is proposed to solve three difficulties of fault detection, including class-imbalanced dataset, expensive labeled cost and outlier of sample set. The definition of information is given and the MQBC is proposed. The score of unlabeled sample is evaluated by using information, and the high score of unlabeled sample is selected to be labeled and added to the training set. Different misclassification types of samples are given to different misclassification cost in CS-SVM, so that the fault detection rate is increased. Finally, fault detection for copper flash smelting process is studied to illustrate the effectiveness of the proposed approach.
出处 《控制与决策》 EI CSCD 北大核心 2012年第10期1489-1493,共5页 Control and Decision
基金 国家杰出青年科学基金项目(61025015) 国家自然科学基金项目(60874069) 国家863计划项目(2009AA04Z137) 中南大学优秀博士学位论文扶植项目(2010年)
关键词 主动学习 代价敏感支持向量机 委员会投票选择算法 故障检测 active learning: cost-sensitive support vector machine: query by committee: fault detection
  • 相关文献

参考文献10

  • 1Saimurugan M, Ramachandran K I, Sugumaran V, et al. Multi component fault diagnosis of rotational mechanicalsystem based on decision tree and support vector machine[J]. Expert Systems with Applications, 2011, 38(3): 3819-3826.
  • 2Davenport M A. The 2nu-SVM: A cost-sensitive extension of the nu-SVM[R]. Texas: Rice University ECE Technical Report, 2005.
  • 3Mahadevan S, Shah S L. Fault detection and diagnosis in process data using one-class support vector machines[J]. J of Process Control, 2009, 19(10): 1627-1639.
  • 4唐明珠,阳春华,桂卫华,谢永芳.代价敏感概率神经网络及其在故障诊断中的应用[J].控制与决策,2010,25(7):1074-1078. 被引量:18
  • 5Roy N, McCallum A K. Toward optimal active learning through sampling estimation of error reduction[C]. Proc of 18th in the Conf Machine Learning. San Francisco: Morgan Kaufmann, 2001: 441-448.
  • 6Lewis D, Gale W. A sequential algorithm for training text classifiers[C]. Proc of the ACM SIGIR Conf on Research and Development in Information Retrieval. London: ACM/Springer, 1994: 3-12.
  • 7Seung H S, Opper M, Sompolinsky H. Query by Committee[C]. Proc of 15th Annual ACM Workshop on Computational Learning Theory. Pittsburgh: Morgan Kaufmann, 1992: 287-294.
  • 8Freund Y, Seung H S, Shamir E, et al. Selective sampling using the query by committee algorithm[J]. Machine Learning, 1997, 28(1): 133-168.
  • 9Pham D, Asano S, Bol.liger M, et al. The design and imlementation of a first-generation cell processor[C]. Proc of ISSCC'05. San Francisco, 2005: 184-185.
  • 10桂卫华,阳春华,李勇刚,贺建军,尹林子.基于数据驱动的铜闪速熔炼过程操作模式优化及应用[J].自动化学报,2009,35(6):717-724. 被引量:40

二级参考文献9

共引文献55

同被引文献206

引证文献17

二级引证文献149

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部