期刊文献+

时间序列分析模型在山东省粮食总产量预测中的应用 被引量:20

Application of Time Series Analysis Model on Total Corn Yield of Shandong Province
在线阅读 下载PDF
导出
摘要 对比传统时间序列分析模型(线性回归、二次滑动平均、一次平滑、二次指数平滑和三次指数平滑等)与ARIMA模型在山东省粮食总产量中的拟合精度,并应用ARIMA(2,1,12)模型预测了未来3年内山东省粮食总产量。结果表明,在山东省粮食总产量拟合中,ARIMA(2,1,12)模型得到的粮食总产量拟合值与观测值的相对误差处于±10%和±5%范围内的分别为73.333%和53.333%,回归方程的决定系数为0.959,优于传统时间序列分析模型;利用ARIMA(2,1,12)模型预测未来3年内山东省粮食总产量,粮食总产量有逐年上升的趋势,且增长率逐年上升。 The classical time series analysis model (linear regression, two step moving average, one step smoothing, two step EXSMOOTH, three step EXSMOOTH, etc.) and the ARIMA model were compared to predict total corn yield, and ARIMA (2,1,12) model was applied to predict the total corn yield in future 3 years. Results showed that the ARIMA (2,1,12) model was better than the classical time series analysis model in total corn yield of Shandong Province. The determine coefficient of regressive equation was 0. 959 and the relative error between fitted value and measured value among 73. 333% and 53. 333% were ±10% and ±5%, respectively. The total corn yield and the increasing ratio ascended year by year in future 3 years with predicting model of ARIMA(2,1,12) applied.
出处 《水土保持研究》 CSCD 北大核心 2007年第3期309-311,共3页 Research of Soil and Water Conservation
基金 鲁东大学大学生科技创新基金资助
关键词 传统时间序列分析模型 ARIMA模型 拟合精度 预测 classical time series analysis model ARIMA fitted precision prediction
  • 相关文献

参考文献7

二级参考文献37

  • 1邬文兵,李秀花,张明玉.运能、投资与铁路客运市场需求之间的相关模型分析[J].中国管理科学,2000,8(S1):720-724. 被引量:1
  • 2李景文,高桂清.交通事故预测分析[J].中国安全科学学报,1996,6(1):20-23. 被引量:17
  • 3徐国祥.统计预测与决策[M].上海:上海财经大学出版社,1998.46-47.
  • 4[1]Ben-Akiva M,Koutsopoulos H N,Mukundan A.A dynamic traffic model system for ATMS/ATIS operations[J].IVHS Journal,1994,2(1):1-19.
  • 5[2]Cheslow M,Hatcher S G,Patel V M.An initial evaluation of alternative intelligent vehicle highway systems architecture[R].MITRE Report 92w0000063,MITRE Corporation, 1992.
  • 6[3]Davis G A,Nihan N L.Nonparametric regression and short term freeway traffic forecasting[J].Journal of Transportation Engineering,1991,117(2):178-188.
  • 7[4]Box G E P,Jenkins G M.Time series analysis:forecasting and control[R].San Francisco:Holden-Day,1977.
  • 8[5]Kalman R E.A new approach to linear filtering and prediction problems[J].Journal of Basic Engineering,1960,82(1):35-45.
  • 9[6]Okutani I,Stephanedes Y J.Dynamic prediction of traffic volume through Kalman filtering theory[J].Transportation Research,Part B,1984,18(1):1-11.
  • 10[7]Altman N S.An introduction to kernel and nearest-neighbor nonparametric regression[J].The American Statistician,1992,46(3):175-185.

共引文献128

同被引文献207

引证文献20

二级引证文献140

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部