期刊文献+

基于相关性分析和支持向量机的手部肌电信号动作识别 被引量:14

SEMG Movement Pattern Recognition of Hand Based on Correlation Analysis and SVM
在线阅读 下载PDF
导出
摘要 为了有效提取表面肌电信号(SEMG)的特征,该文提出了一种基于相关性分析的改进的特征提取方法。首先用空域相关法对两路SEMG信号进行消噪预处理,然后对处理后的SEMG信号进行四尺度小波变换,并通过相关性分析提取SEMG信号的重要边缘在各尺度上的小波系数,以各尺度上的这些系数的平方和构建六维特征向量输入支持向量机分类器,对手部的多个动作进行分类。实验结果表明,基于相关性分析和小波变换构筑的特征向量结合支持向量机的方法能够以较高识别率区分伸腕、屈腕、展拳、握拳4种动作,能够得到比传统的神经网络分类器更为准确的分类结果。 In order to extract effectively the feature of SEMG signal, an improved method of feature extraction based on correlation analysis is proposed. Firstly, the paper decreases the noise included in two channel SEMG signals using spatial correlation filtering. Secondly, the paper analyzes SEMG signal after de-noising with 4-scale wavelet transformation and extract wavelet coefficient of the main fringe by arithmetic of correlation analysis. A 6-dimension eigenvector which is constructed with sum of squares of the wavelet coefficient is inputted SVM. The result shows that four movements (wrist spreads, wrist bends, hand extension, hand grasps) are successfully identified by the method of SVM combined with the eigenvector which is constructed at the condition of correlation analysis and wavelet transformation. The more precise classified results can be get than neural network sorter with this method.
出处 《电子与信息学报》 EI CSCD 北大核心 2008年第10期2315-2319,共5页 Journal of Electronics & Information Technology
基金 国家自然科学基金(60474054) 浙江省科技计划(2007C23088)资助课题
关键词 表面肌电信号 相关性 特征提取 支持向量机 Surface ElectroMyoGraphy(SEMG) Correlation Feature extraction Support Vector Machine(SVM)
  • 相关文献

参考文献12

  • 1Granpe D and Cline W K. Functional separation of EMG signals via ARMA identification methods for prosthesis control purposes[J]. IEEE Trans. on Syst. Man Cybern, 1975, 5(3): 252-259.
  • 2Hudgins B, Philip Parker, and Scott R N. A new strategy for multifunction myoelectric control. IEEE Trans. on Biomed Eng, 1993, 40(1): 82-94.
  • 3Kang Werr-Jun, et al.. The application of cepstral coefficients and maximum likelihood method in EMG pattern recognition. IEEE Trans. on Biomed Eng, 1995, 42(8): 777-785.
  • 4罗志增,杨广映.表面肌电信号的AR参数模型分析方法[J].传感技术学报,2003,16(4):384-387. 被引量:28
  • 5Vapnik V N. An overview of statistical learning theory. IEEE Trans. on Neural Network, 1999, 10(5): 988-999.
  • 6Witkin A. Scale-space filtering: A new approach to multi-scale description. IEEE International Conference on ICASSP'84, 1984, 9(3): 150-153.
  • 7Xu Yansun, et al.. Wavelet transform domain filters: A spat ially selective noise filtration technique. IEEE Trans. on Image Processing, 1994, 3(6): 747-758.
  • 8Mallat S and Hwang W L. Singularity detection and processing with wavelets. IEEE Trans. on Inform. Theory, 1992, 38(2): 617-643.
  • 9贾雪琴,王旭,李景宏,杨丹.基于小波变换和K-L展开的单通道表面肌电信号识别[J].东北大学学报(自然科学版),2006,27(8):859-862. 被引量:7
  • 10张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. 被引量:2311

二级参考文献12

  • 1马维祯 殷瑞祥.子波分析与子波变换[M].广州:华南理工大学出版社,1992.1.
  • 2V.N.Vapnik著 张学工译.统计学习理论的本质[M].清华大学出版社,2000.第2章.
  • 3Englehart K,Hudgins B,Parker P A,et al.Classification of the myoelectric signal using time-frequency based representations[J].Medical Engineering & Physics,1999,21:431-438.
  • 4Nazarpour K,Sharafat A R,Firoozabadi S M P.Surface EMG signal classification using a selective mix of higher order statistics[A].Proceedings of the 27th Annual International Conference of the IEEE-EMBS[C].Shanghai,2005.1060.
  • 5Hudgins B,Parker P A,Scott R N.A new strategy for multifunction myoelectric control[J].IEEE Transactions on Biomedical Engineering,1993,40(1):82-94.
  • 6Van de Vegte J.数字信号处理基础[M].侯正信,王国安,译.北京:电子工业出版社,2003.429-430.
  • 7容观澳.模式识别及其应用[M].北京:清华大学出版社,1994.114-116.
  • 8Parker P A,Scott R N.Myoelectric control of prosthesis[J].CRC Critical Reviews in Biomedical Engineering,1986,13(4):283-310.
  • 9Englehart K,Hudgins B,Parker P A.A wavelet-based continuous classification scheme for multifunction myoelectric control[J].IEEE Transactions on Biomedical Engineering,2001,48(3):302-311.
  • 10Chan A D C,Englehart K,Hudgins B,et al.A multi-expert speech recognition system using acoustic and myoelectric signals[A].Proceeding of the Second Joint EMBS/BMES Conference[C].Houston,2002.72-73.

共引文献2348

同被引文献137

引证文献14

二级引证文献73

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部