期刊文献+

基于多源信息和粒子群优化算法的下肢运动模式识别 被引量:7

Lower limb locomotion-mode identification based on multi-source information and particle swarm optimization algorithm
在线阅读 下载PDF
导出
摘要 为了提高人体下肢多运动模式识别的准确性,提出一种基于多源信息和粒子群优化算法-误差反向传播(PSO-BP)神经网络的识别方法.建立下肢多源信息采集系统,该系统由下肢表面肌电信号、髋关节角度、髋关节加速度组成.选择肌电信号偏度、峭度和功率谱比值为肌电信号特征,髋关节角度细分模式均值比为腿部角度信号特征,加速度标准差、能量峰值、两轴相关性系数为髋关节加速度特征.按照主成分分析(PCA)方法融合上述特征值,利用PSO-BP进行识别.实验结果表明:该方法识别率为95.75%,平均识别时间为1.234 8s. An approach based on multi-source information and particle swarm optimization algorithm-back propagation(PSO-BP)neural network was proposed in order to improve the accuracy of human lower limb locomotion-mode identification.A multi-source information acquisition system was established,which was composed of lower limb surface electromyography signal(sEMG),hip joint angle and hip joint acceleration.Specifically,skewness,kurtosis and power spectrum ratio were extracted from surface electromyography(sEMG);the average ratio of hip angle of segmentation mode was extracted from gyroscope;standard deviation,peak of energy and correlation coefficient were extracted from accelerometer.Principal component analysis(PCA)was used to fuse these features.PSO-BP neural network was trained using an experimental database for locomotion-mode identification.The test results indicated that the locomotionmode identification rate was 95.75%,and the average identification time was 1.234 8s.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2015年第3期439-447,共9页 Journal of Zhejiang University:Engineering Science
基金 国家自然科学基金资助项目(61174009 61203323) 天津市自然科学基金资助项目(13JCQNJC03400)
关键词 多源信息 粒子群优化算法 主成分分析 下肢运动模式识别 BP神经网络 multi-source information particle swarm optimization algorithm principal component analysis lower limb locomotion-mode identification BP neural network
  • 相关文献

参考文献23

  • 1杨鹏,刘作军,耿艳利,赵丽娜.智能下肢假肢关键技术研究进展[J].河北工业大学学报,2013,42(1):76-80. 被引量:34
  • 2FRANK S,HUSEYIN A V, MICHAEL G. Upslopewalking with a powered knee and ankle prosthesis: ini-tial results with an amputee subject [J]. IEEE Transac-tions on Neural Systems and Rehabilitation Engineering,2011, 19(1): 71-79.
  • 3ABEL E W,ZACHARIA P C,FORSTER A,et al. Neuralnetwork analysis of the EMG interference pattern [J]. Medi-cal Engineer and Physics, 1996, 18(1) : 12 - 17.
  • 4佘青山,孟明,罗志增,马玉良.基于多核学习的下肢肌电信号动作识别[J].浙江大学学报(工学版),2010,44(7):1292-1297. 被引量:4
  • 5吴剑锋,吴群,孙守迁.简约支持向量机分类算法在下肢动作识别中的应用研究[J].中国机械工程,2011,22(4):433-438. 被引量:16
  • 6HE H, TODD A K, ROBERT D L. A strategy foridentifying locomotion modes using surface electromyo-graphy [J]. IEEE Transactions on Biomedical Engineer-ing, 2009,56(1): 65 - 73.
  • 7DU L,ZHANG F,LIU M, et al. Toward design of anenvironment-aware adaptive locomotion-mode-recogni-tion system [J]. IEEE Transactions on Biomedical Engi-neering, 2012,59(10): 2716 - 2726.
  • 8STOLZE H, KUHTZ-BUSCHBECK J P, MOND-gait parameters in children and adults [J]. Gait andPosture, 1998, 7(2):125 - 130.
  • 9MILICA D. Automatic recognition of gait phases fromaccelerations of leg segments [C] // 9th Symposium onNeural Network Applications in Electrical Engineering.Belgrade: [s. n. ], 2008 : 121 - 124.
  • 10LAU H, TONG K. The reliability of using accelerom-eter and gyroscope for gait event identification on per-sons with dropped foot [J], Gait and Posture, 2008,27(2): 248 -257.

二级参考文献123

共引文献156

同被引文献75

引证文献7

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部