期刊文献+

下肢EMG的小波支持向量机多类识别方法 被引量:6

Multiclass recognition of lower limb EMG using wavelet SVM
原文传递
导出
摘要 针对下肢肌电信号(EMG)的多运动模式分类问题,提出了一种基于小波支持向量机(WSVM)的多类识别方法.在小波框架理论和SVM核方法的基础上,构造基于二叉树结构的WSVM多类分类器,采用多尺度分析对下肢EMG进行消噪处理和特征提取,将特征向量输入WSVM多类分类器.以水平行走为例对支撑前期、支撑中期、支撑末期、摆动前期和摆动末期等5个细分运动模式进行分类,并与传统的神经网络和高斯核SVM分类器进行比较.实验结果验证了所提方法的有效性. Aimed at the multi-motion pattern classification problem of lower limb EMG (electromyo- graphy), a WSVM (wavelet support vector machine)-based multiclass recognition method was proposed. Firstly, the MWSVM (multiclass WSVM) was constructed using the binary tree structure, based on the wavelet frame and the kernel method of SVM. Secondly, the de-nosing process and fea- ture extraction were done by the multi-scale analysis for the lower limb EMG, and then the eigenvector is as the input of the MWSVM classifier. Finally, five subdividing patterns were identified in levelground walking, i.e. support prophase, support metaphase, support telophase, swing prophase and swing telophase, as compared with traditional neural networks and Gaussian kernel SVM (support vector machine). The effectiveness of the proposed method is validated by experimental results.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第10期75-79,共5页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家高技术研究发展计划资助项目(2008AA04212) 国家自然科学基金资助项目(60705010) 浙江省自然科学基金资助项目(Y1090761)
关键词 神经网络 肌电信号 小波变换 支持向量核 小波支持向量机 neural networks electromyography wavelet transform support vector kernel wavelet support vector machine
  • 相关文献

参考文献10

  • 1Al-Assaf Y, AI-Nashash H. Surface myoelectric signal classification for prostheses control[J]. Journal of Medical Engineering & Technology, 2005, 29 (5) : 203-207.
  • 2李芳,王人成,姜力,刘宏,朱德有.基于隐马尔可夫模型-径向基神经网络的表面肌电信号识别[J].中国康复医学杂志,2006,21(11):1016-1018. 被引量:3
  • 3Bu N, Okamoto M, Tsuji T. A hybrid motion classification approach for EMG-based human-robot interfaces using Bayesian and neural network[J]. IEEE Transactions on Robotics, 2009, 25(3): 502-511.
  • 4Burges C J C. A tutorial on support vector machines for pattern recognition[J]. Knowledge Discovery and Data Mining, 1998, 2(2): 121-167.
  • 5崔建国,李一波,李忠海,刘建民,徐心和.基于小波包与支持向量机的复杂信号模式识别[J].数据采集与处理,2008,23(2):163-167. 被引量:20
  • 6席旭刚,李仲宁,罗志增.基于相关性分析和支持向量机的手部肌电信号动作识别[J].电子与信息学报,2008,30(10):2315-2319. 被引量:14
  • 7Zhang L, Zhou W, Jiao L C. Wavelet support vector machine[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2004, 34(1):34-39.
  • 8Duan K, Keerthi S. Which is the best multiclass SVM method? An empirical study[C] //Proceedings of the Sixth International Workshop on Multiple Classifier Systems. Seaside: Springer-Verlage, 2005 : 278-285.
  • 9Xu Y S, Weaver J B, Healy D M, et al. Wavelet transform domain filters: a spatially selective noise filtration technique[J]. IEEE Transactions on Image Processing, 1994, 3(6): 747-758.
  • 10Franc V, Hlavac V. Statistical Pattern Recognition Toolbox, Version 2. 09, 2008. [EB/OL]. [2010- 02-10]. Available at: http: //cmp. felk. cvut. cz/ cmp/software/stprtool/index. html.

二级参考文献23

共引文献33

同被引文献56

引证文献6

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部