期刊文献+

Lorenz映射系统中连续整数周期轨道的存在性 被引量:1

Consturctive periodic orbits in Lorenz maps systems
在线阅读 下载PDF
导出
摘要 以符号动力学为基础,改进了Lorenz映射的允字条件.定义了单调1-基本字节和单调0-基本字节的概念,这些单调基本字节形成了周期序列的所有可能的基本字节,因此在满足允字条件下,给寻找周期轨道的算法带来了很大方便.证明了一般Lorenz映射系统存在连续整数周期轨道的充要条件是存在某条件下的2个互素周期,克服了Sarkovskii关于连续整数周期点对于函数连续性的限制,而所讨论的Lorenz映射也没有作每个单调支为线性的要求.给出了一些例子中连续整数周期轨道的符号序列的算法与表达形式,所提出的算法效率高,并可在作相应变化后推广到其他动力系统中. Based on symbolic dynamics, the admissibility conditions are improved and thus the concepts of monotone basic 1-strings and O-strings are defined. The basic strings generate all the possible basic strings of any periodic series thus the concepts improve the algorithm of finding periods under the admissibility conditions. It provides a satisfactory and necessary condition for existence of consecutive periodic orbits of Lorenz maps, that is, there exist two co-prime periods under some conditions, which overcomes the restriction of continuity of the functions in the Sarkovskii's theorem on consecutive periods, and the Lorenz maps are not restricted within piecewise linear ones. A corresponding algorithm and results of consecutive periods by symbolic series are given for some examples. The algorithm is of high efficiency and can be extended to other dynamic systems after some corresponding variation.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第5期923-927,共5页 Journal of Southeast University:Natural Science Edition
基金 浙江省教育厅科研资助项目(20070814) 国家自然科学基金资助项目(10871168)
关键词 LORENZ映射 符号动力学 混沌 连续周期轨道 Lorenz maps symbolic dynamics chaos orbits of consecutive periods
  • 相关文献

参考文献9

  • 1丁义明,范文涛.一簇Lorenz映射的混沌行为与统计稳定性[J].数学物理学报(A辑),2001,21(4):559-569. 被引量:4
  • 2Peng Shou-Li, Du Lei-Ming. Dual star products and symbolic dynamics of Lorenz maps with the same entropy[J].Physics Letters A, 1999, 261 ( 1/2 ) : 63 - 73.
  • 3Zhou Zhong,Peng Shou-Li. Cyclic star products and universalities in symbolic dynamics of trimodal maps [ J ]. Physica D, 2000, 140(3/4) : 213 -226.
  • 4Peng Shou-Li, Zhang Xu-Sheng,Cao Ke-Fei. Dual star products and metric universality in symbolic dynamics of three letters[J]. Physics Letters A, 1998, 246(1/2) : 87 - 96.
  • 5Silva L, Ramos J S. Topological invariants and renormalization of Lorenz maps [J]. Physica D, 2002, 162 (3/4): 233-243.
  • 6Zheng Wei-Mou. Predicting orbits of the Lorenz equation from symbolic dynamics[J]. Physica D, 1997, 109(1/2) : 191 - 198.
  • 7王福来,达庆利.广义Lorenz映射的混沌行为及不变密度[J].东南大学学报(自然科学版),2007,37(4):711-715. 被引量:2
  • 8Stefan P. A theorem of Sarkovskii on the existence of periodic orbits of continuous endomorphisms of the real line, comm[J]. Math Phys, 1977,54:237 - 248.
  • 9Li T Y, Yorke J A. Period three implies chaos [ J ]. Amer Math Monthly, 1975, 82:985 -992.

二级参考文献11

  • 1王福来.广义Taylor映射与Hénon映射具有混沌条件的改进[J].数学进展,2004,33(5):591-597. 被引量:4
  • 2Percival I,Vivaldi F.Arithmetical properties of strongly chaotic motions[J].Physica D,1987,25(1):105-130.
  • 3Lasota A,Mackey M.Chaos,fractals and noise[M].2nd ed.New York:Springer-Verlag,1994.
  • 4Keener J.Chaotic behavior in piecewise continuous difference equations[J].Trans Amer Mat Soc,1980,26(1):589-604.
  • 5Malkin M L.Rotation intervals and the dynamics of Lorenz type mappings[J].Selecta Mahematica Sovietica,1991,2(10):265-275.
  • 6Ding Yiming,Fan Wentao.Asymptotic periodicity of Lorenz maps[J].Acta Math Sci,1999,19(1):114-120.
  • 7Elezovic N,Zupanovic V,Zubrinic D.Box dimension of trajectories of some discrete dynamical systems[J].Chaos,Solitons & Fractals,2007,34(2):244-252.
  • 8Chen Z X,Cao K F,Peng S L.Symbolic dynamics analysis of topological entropy and its multifractal structure[J].Phys Rev E,1995,51(3):1983-1988.
  • 9丁玖,周爱辉.不变测度及其计算[J].数学进展,1998,27(4):309-323. 被引量:7
  • 10闵琦,陈中轩.洛伦兹映射拓扑熵计算的一点技巧[J].云南大学学报(自然科学版),2001,23(1):24-26. 被引量:2

共引文献4

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部