期刊文献+

基于粗糙集和神经网络的润滑油中磨损磨粒的识别 被引量:6

Recognition of Wear Debris in Lubricating Oil Based on Rough Set and Neural Network
在线阅读 下载PDF
导出
摘要 为了更有效地对润滑油中的磨损磨粒进行识别,探讨了基于粗糙集和神经网络的磨粒识别。它首先利用粗糙集理论对磨粒特征参数进行约简,这样能够大大减少了神经网络的输入维数。然后介绍了一种径向基神经网络,并利用它对磨粒进行分类。对20个磨粒进行识别,磨粒分类分对14个,分错6个,识别率达到70.0%。 In order to classify wear debris in lubricating oil more effectively, a wear debris recognition method based on rough set and neural network was put forward. At first, debris feature parameters are simplified based on rough sets theory, and the input information-dimensions is reduced. Then a radius basis function neural network was introduced, and it is used to classify wear debris. 20 wear debris was classified by the method,and result shows that 14 is right,6 is fault, the ratio of recognition reaches 70.0%.
机构地区 徐州空军学院
出处 《润滑与密封》 CAS CSCD 北大核心 2007年第1期162-164,共3页 Lubrication Engineering
关键词 模式识别 磨损磨粒 径向基神经网络 粗糙集 pattern recognition wear debris RBF neural network rough set
  • 相关文献

参考文献8

  • 1Akihiko Umeda, Joichi Sugimura, Yuji Yamamoto. Characterization of wear particle and their relation with sliding conditions [J]. Wear, 1998, 216: 220-228.
  • 2Lingras P. Comparison of neofuzzy and rough neural networks [J]. Information Science, 1998, 110:207-215.
  • 3Ken Xu, A R Luxmoore, L M Jones, et al. Integration of neural networks and expert systems for microscopic wear particle analysis[J].Knowledge-Based Systems,1998,11:213-227.
  • 4Lixiang Shen, Francis E H Tay, Liangsheng Qu, et al. Fault Diagnosis Using Rough Sets Theory [J]. Computers in Industry, 2000,43:61-72.
  • 5夏克文,宋建平,李昌彪.基于粗集和神经网络的石油测井数据挖掘方法[J].信息与控制,2003,32(4):300-303. 被引量:5
  • 6张文修,吴伟志,梁吉业等.粗糙集理论与方法[M].北京:科学出版社,2000.
  • 7王伟华,殷勇辉,王成焘.基于径向基函数神经网络的磨粒识别系统[J].摩擦学学报,2003,23(4):340-343. 被引量:30
  • 8J F Peters, A Skowron, L Han, et al. Towards rough neural computing based on rough neural networks [C]. Precedings of the International Conference on Rough Sets and Current Trends in Computing (RSTC'2000). Banff Canada,2000: 572-579.

二级参考文献5

  • 1蔡永香,肖慈珣,侯庆功,李厚裕.应用神经网络识别地层特性[J].测井技术,1994,18(6):424-430. 被引量:5
  • 2测井学.《测井学》编写组[M].北京:石油工业出版社,1998..
  • 3Pawlak Z. Rough Sets: Theoretical Aspects of Reasoning about Data [ M ]. Netherlands: Kluwer Academic Ddordercht, 1991.
  • 4王柏祥 陆生勋 陆系群.带有非线性连接权的学习网络[A]..第三届全国神经网络学术论文集[C].西安:西安电子科技大学出版社,1993.322—323.
  • 5陈遵德.测井数据模式识别中的信息优化方法[J].测井技术,1998,22(6):427-430. 被引量:3

共引文献63

同被引文献40

引证文献6

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部