期刊文献+

改进的多目标粒子群算法 被引量:21

Improved Multi-Objective Particle Swarm Algorithm
在线阅读 下载PDF
导出
摘要 提出了一个改进的粒子群算法并将其用于解决多目标优化问题.该算法利用粒子群算法的信息传递机制,引入多目标演化算法常用的归档技术,采用SPEA2算法的环境选择和配对选择策略,使得整个群体在保持适当的选择压力的情况下收敛于Pareto最优解集.标准测试函数的数值实验结果表明,所提出的算法能够使找到的解集快速收敛到Pareto非劣最优目标域,并且解集沿着Pareto非劣最优目标域有很好的扩展性. An improved particle swarm algorithm to solve multi-objective problems is proposed. The algorithm uses both the information transfer strategy of particle swarm algorithm and the archiving technique which is commonly used in multi-objective evolutionary algorithms. Environmental selection and matching selection strategy of SPEA2 algorithm are also adopted to assure the population converge to the true Pareto front while keeping proper selection pressure. The benchmark problems numerical experiment results demonstrate that the proposed method can rapidly converge to the Pareto optimal front and spread widely along the front.
出处 《武汉大学学报(理学版)》 CAS CSCD 北大核心 2005年第3期308-312,共5页 Journal of Wuhan University:Natural Science Edition
基金 国家863计划(2002AA1Z1490) 湖北省自然科学基金项目(2002AB040)资助
关键词 多目标优化 粒子群算法 PARETO最优解 multi-objective optimization particle swarm algorithm Pareto solutions
  • 相关文献

参考文献10

  • 1Eberhart R C, Kennedy J. A New Optimizer Using Particle Swarm Theory[A]. Proceedings of the Sixth International Symposium on Micro Machine and Human Science[C]. Piscataway, NJ: IEEE Service Center,1995. 39-43.
  • 2谢涛,陈火旺.多目标优化与决策问题的演化算法[J].中国工程科学,2002,4(2):59-68. 被引量:60
  • 3Deb K. Multi-Objective Optimization Using Evolutionary Algorithms[M]. England:John Wiley & Sons Ltd ,2001.
  • 4Kennedy J, Eberhart R C. Swarm Intelligence [M].San Francisco:Morgan Kaufmann Publishers, 2001.
  • 5Purshouse R C, Fleming P J. Elitism, Sharing and Ranking Choices in Evolutionary Multi-Criterion Optimisation[R]. Sheffield, UK: Departament of Automatic Control and Systems Engineering, University of Sheffield, 2002.
  • 6Coello C A, Lechuga M S. MOPSO: A Proposal for Multiple Objective Particle Swarm Optimization [A].Proceedings of the 2002 Congress on Evolutionary Computation (CEC' 2002) [C]. Piscataway, New Jersey: IEEE Service Center, 2002.
  • 7Zitzler E, Laumanns M, Thiele L. SPEA2: Improving the Strength Pareto Evolutionary Algorithm [R]. Zurich: Swiss Federal Institute of Technology Zurich (ETH) ,2001.
  • 8Knowles L. Local-Search and Hybrid Evolutionary Algorithms for Pareto Optimization [D]. UK: Department of Computer Science, University of Reading,2002.
  • 9熊盛武,李锋.并行Pareto多目标演化算法[J].武汉大学学报(理学版),2003,49(3):318-322. 被引量:7
  • 10Zitzler E. Evolutionary Algorithms for Multiobjecitve Optimization: Methods and Applications [D]. Zurich,Switzerland: Swiss Federal Institute of Technology (ETH) ,1999.

二级参考文献46

  • 1Pareto V. Cours d'economies politique, volume Ⅰ and Ⅱ [M]. F Rouge, Lausanne, 1896
  • 2Rosenberg R S. Simulation of genetic populations with biochemical properties [D]. University of Michigan,Ann Harbor, Michigan, 1967
  • 3Schaffer J D. Multiple objective optimization with vector evaluated genetic algorithms [A]. Genetic Algorithms and their Applications: Proceeding of the First International Conference on Genetic Algorithms [C], Lawrence Erlbaum, 1985. 93~ 100
  • 4Veldhuizen D A V, Lamont G B. Multiobjective evolutionary algorithm research: a history and analysis [R].TR-98-03, Department of Electrical and Computer Engineering, Graduate School of Engineering, Air Force Institute of Technology, Wright Patterson AFB, OH,USA, 1998
  • 5Fonseca C M, Fleming P J. Genetic algorithms for multiobjective optimization: formulation, discussion and generation [A]. Forrest S. Proceedings of the Fifth International Conference on Genetic Algorithms [C], SanMateo, California, University of Illinois at Urbana Champaign, Morgan Kaufman Publishers, 1993. 416~423
  • 6Srinivas N, Kalyanmoy D. Multiobjective optimization using nondominated sorting in genetic algorithms [J].Evolutionary Computation, 1994, 2(3): 221~248
  • 7Horn J, Nafpliotis N. Multiobjective optimization using the Riched Pareto genetic algorithm [R]. Technical Report IlliGAL Report 93005, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA, 1993
  • 8Lis J, Eiben A E. A multi-sexual genetic algorithm for multi-objective optimization [A]. Fukuda T, Furuhashi T. Proceedings of the 1996 International Conference on Evolutionary Computation, IEEE [C], Nagoya, Japan,1996. 59~64
  • 9Darrell W. Evaluating evolutionary algorithms [J]. Artificial Intelligence, 1996, 85:245~276
  • 10Wienke P B, Lucasius C, Kateman G. Multicriteria target vector optimization of analytical procedures using a genetic algorithm [J]. Analytica Chimica Acta,1992, 265(2): 211~225

共引文献64

同被引文献264

引证文献21

二级引证文献145

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部