期刊文献+

基于(μ+λ)选择策略的多目标优化分段遗传算法 被引量:4

A Segmented Multi-Objective Genetic Algorithm Based on the(μ+λ) Selection Strategy
在线阅读 下载PDF
导出
摘要 在多目标优化遗传算法中,将整个种群按目标函数值划分成若干子种群,在各子种群内μ个父代经遗传操作产生λ个后代;然后将各子种群的所有父代和后代个体收集起来进行种群排序适应度共享,选取较好的个体组成下一代种群。相邻的非劣解容易分在同一子种群有利于提高搜索效率;各子种群间的遗传操作可采用并行处理;各子种群的所有个体收集起来进行适应度共享有利于维持种群的多样性。最后给出了计算实例。 In multi-objective optimization genetic algorithms, the whole population is sorted with respect to the values of the focused objective function and divided into sub-populations. In each sub-population,μ parents generate λ, offsprings by genetic operators. Then,all individuals are gathered and sorted, the fitness sharing is performed and better individuals are selected to be the next generation. In this approach, the Pareto optimum solutions which are close to each other are collected by one sub-population and using the (μ+λ) selection strategy increases search efficiency. The genetic operation which is performed in sub-populations is suitable for parallel processing and the fitness sharing of the whole population is conducive to maintaining the diversity of population as well.
出处 《计算机工程与科学》 CSCD 2006年第9期91-93,共3页 Computer Engineering & Science
关键词 多目标优化 遗传算法 演化算法 PARETO最优 multl-objective optimization genetic algorithm evolutionary algorithm Pareto optimal
  • 相关文献

参考文献10

  • 1崔逊学,林闯,方廷健.多目标进化算法的研究与进展[J].模式识别与人工智能,2003,16(3):306-314. 被引量:17
  • 2Carlos Artemio,Coello Coello.Evolutionary Multiobjective Optimization:Current and Future Challenges[A].Advances in Soft Computing-Engineering,Design and Manufacturing[C].2003.243-256.
  • 3谢涛,陈火旺.多目标优化与决策问题的演化算法[J].中国工程科学,2002,4(2):59-68. 被引量:60
  • 4Lino Costa,Pedro Oliveira.An Evolution Strategy for Multiobjective Optimization[A].IEEE Proc of the Congress on Evolutionary Computation.Vol 1[C].2002.97-102.
  • 5T Hiroyasu,M Miki,S Watanabe.The New Model of Parallel Genetic Algorithm in Multi-Objective Optimization Problems(Divided Range Multi-Objective Genetic Algorithm)[A].IEEE Proc of the Congress on Evolutionary Computation.Vol 1[C].2000.333-340.
  • 6T Hiroyasu,M Miki,S Watanabe.Distributed Genetic Algorithms with a New Sharing Approach in Multiobjective Optimization Problems[A].IEEE Proc of the Congress on Evolutionary Computation[C].1999.69-76.
  • 7周育人,李元香,王勇,康立山.Pareto强度值演化算法求解约束优化问题[J].软件学报,2003,14(7):1243-1249. 被引量:56
  • 8玄光男 程润伟.遗传算法与工程优化[M].北京:清华大学出版社,2004..
  • 9Kalyanmoy Deb,Amrit Pratap,Sameer Agarwal,et al.A Fast and Elitist Multiobjective Genetic Algorithm:NSGA-II[J].IEEE Trans on Evolutionary Computation,2002,6(2):182-197.
  • 10周育人,闵华清,许孝元,李元香.多目标演化算法的收敛性研究[J].计算机学报,2004,27(10):1415-1421. 被引量:14

二级参考文献109

  • 1Michalewicz Z, Schoenauer M. Evolutionary algorithms for constrained parameter optimization problems. Evolutionary Computation, 1996,4(1):1~32.
  • 2Michalewicz Z. Genetic algorithms, Numerical optimization and constraints. In: Esheiman LJ, ed. Proceedings of the 6th International Conference on Genetic Algorithms. San Mateo: Morgan Kanfmann Publishers, 1995 151~158.
  • 3Deb K. An efficient constraint handling method for genetic algorithms. Computer Methods in Applied Mechanics and Engineering,2000,186(2--4):311 ~338.
  • 4Runarsson TP, Yao X. Stochastic ranking for constrained evolutionary optimization. IEEE Transaclons on Evolutionary Computation, 2000,4(3):284-294.
  • 5Zitzler E, Thiele L. Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach. IEEE Transactions on Evolutionary Computation, 1999,3(4):257~271.
  • 6Beyer H-G, Deb K. On self-adaptive features in real-parameter evolutionary algorithms. IEEE Transactions on Evolutionary Computation, 2001,5(3):250--270.
  • 7Ono I, Kita H, Kobayashi S. A robust real-coded genetic algorithm using unimodal normal distribution crossover augmented by uniform crossover: effects of self adaptation of crossover probabilities. In: Banzhaf W, Daida J, Eiben E, eds. GECCO'99:Proceedings of the Genetic and Evolutionary Computation Conference. San Mateo: Morgan Kaufmann Publishers, 1999. 496~503.
  • 8Tsutsui S, Yamamura M, Higuchi T. Multi-Parent recombination with simplex crossover in real coded genetic algorithms. In:Banzhaf W, Daida J, Eiben E, eds. GECCO'99: Proceedings of the Genetic and Evolutionary Computation Conference. San Mateo:Morgan Kaufmann Publishers, 1999. 657---664.
  • 9Kita H. A comparison study of self-adaptation in evolution strategies and real-coded genetic algorithms. Evolutionary Computation,2001,9(2):223~241.
  • 10Deb K, Joshi D, Anand A. Real-Coded evolutionary algorithms with parent-centric recombination. Technical Report, KanGALReport No.2001003, Kanpur: Indian Institute of Technology, 2001.

共引文献527

同被引文献62

引证文献4

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部