期刊文献+

基于广义加权支持向量机的焊接缺陷分类方法 被引量:4

Classification Method of Welding Defect Based on Generalized Weighted SVM
在线阅读 下载PDF
导出
摘要 提出了一种广义加权支持向量机(GW SVM)的焊接缺陷分类算法。首先为克服由于样本数量不平衡性引起的小样本类别精度差的问题,引入由于样本差异的权重;然后为解决不同类别的重要性要求,根据经验人工确定不同类别重要性的权重。针对样本重要性的影响,采用有监督模糊聚类方法来确定样本重要性权重。测试结果表明:广义加权支持向量机在噪声影响较大及样本类别相差较大时,能够提高重要的、数量少的缺陷检测精度。 A classification algorithm of generalized weighted support vector machine (GWSVM) is put forward. In order to improve the class accuracy of small number of samples caused by the imbalance of sample number ,weight of sample difference is introduced. According to experience,the importance weights of different classes is manually determined to solve the importance of different classes. The method of fuzzy cluster with superision is used to determine the weights of sample importance. Testing results show that GWSVM can improve the inspection accuracy of a small number of important defects when the noise and sample sort have important effect.
出处 《华东理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2005年第5期644-648,共5页 Journal of East China University of Science and Technology
基金 江苏省博士后科研基金资助项目
关键词 广义加权支持向量机 样本不平衡 样本重要性 有监督聚类 焊接缺陷 分类 GWSVM sample imbalance sample importance cluster with supervision welding defect classification
  • 相关文献

参考文献11

  • 1周伟,王承训.焊接缺陷自动识别系统的研究和应用[J].焊接学报,1992,13(1):45-50. 被引量:25
  • 2Silva R R,Siqueira M H S,Caloba L P,et al. Radiographics pattern recognition of welding defects using linear classifiers [J]. Insight, 2001,43(10): 669-674.
  • 3任大海,尤政,孙长库,叶声华.焊缝X射线实时成象自动分析系统[J].焊接学报,2000,21(1):60-63. 被引量:20
  • 4Vapnik V. The Nature of Statistical Learning Theory[M].New York: Springer press, 1995.
  • 5Chew H G, Bogner R E, Lin C C. Dual v-support vector machine with error rate and training size biasing[J]. IEEE International Conference on Acoustics, Speech and Signal Processing-Proceedings, 2001,2:1 269-1 272.
  • 6Sch(o)lkopf B,Smola A, Williamson R C,et al. New support vector algorithms [J]. Nenral Computation, 2000, 12 ( 5 ):1 207-1 245.
  • 7Suykens J A K,Brabanter De,Lukas L,et al. Weighted least squares support vector machines: Robustness and sparce approximation[J]. Neurocomputing, 2002,48 (10): 85-105.
  • 8Janos Abonyi,Ferenc Szeifert. Supervised fuzzy clustering for the identification of fuzzy classifiers[J]. Pattern Recognition Letters,2004,24(14) :2 195-2 207.
  • 9Hsu Chih-wei,Lin C J. A comparison of methods for multiclass support vector machines[DB/OL]. http:∥citeseer. ist.psu. edu/hsu01comparison. html.
  • 10GB3323-87.钢熔化焊对接接头射线照相和质量分级[S].[S].,..

二级参考文献4

共引文献47

同被引文献57

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部