期刊文献+

一种基于粒子群算法求解约束优化问题的混合算法 被引量:49

Hybrid algorithm based on particle swarm optimization for solving constrained optimization problems
在线阅读 下载PDF
导出
摘要 通过将粒子群算法(PSO)与差别进化算法(DE)相结合,提出一种混合算法PSODE,用于求解约束优化问题.PSODE是在PSO算法中适当引入不可行解,将粒子群拉向约束边界,加强对约束边界的搜索,同时与DE算法结合以加强搜索能力.基于典型高维复杂函数的仿真表明,该算法简单高效,鲁棒性强. A hybrid algorithm, PSODE, is proposed by combining particle swarm optimization (PSO) with different evolution (DE), for solving constrained optimization problems. PSODE is a powerful searching algorithm by keeping properly infeasible solution to attract the swarm to the constraint boundary and by combining with DE to enhance the searching ability. Simulation results on benchmark complex functions with high dimension show that the hybrid algorithm is effective, efficient and fairly robust to initial conditions.
出处 《控制与决策》 EI CSCD 北大核心 2004年第7期804-807,812,共5页 Control and Decision
基金 国家自然科学基金资助项目(70271035 60104004) 国家973子项目资助(2002CB312202) 上海市启明计划(03QG14053).
关键词 约束优化问题 粒子群优化算法 群体智能 差别进化 Computer simulation Constraint theory Optimization
  • 相关文献

参考文献9

  • 1[2]Kennedy J, Eberhart R. Particle swarm optimization[A]. Proc IEEE Int Conf on Neural Networks[C]. Perth, 1995. 1942-1948.
  • 2[3]Rainer Storn, Kenneth Price. Different evolution--A simple and efficient heuristic for global optimization over continuous space[J]. J of Global Optimization, 1997,(11): 341-359.
  • 3秦寿康.最优化理论与方法[M].北京:电子工业出版社,1986..
  • 4[5]Wang Tao. Global Optimization for Constrained Nonlinear Programming[M]. Doctoral Dissertation: University of Illinois at Urbana-Champaign, 2001.
  • 5[6]Deb K, Agrawal S. A niched-penalty approach for constraint handling in genetic algorithms[A]. Proc of the ICANNGA-99[C]. Portoroz, 1999. 234-239.
  • 6[7]Keane A J. Experiences with optimizers in structural design[A]. Proc of the Conf on Adaptive Computing in Engineering Design and Control 94[C]. Plymouth, 1994.14-27.
  • 7[8]Michalewicz Z, Schoenauer M. Evolutionary algorithms for constrained parameter optimization problems[J]. Evolutionary Computation,1996,4(1):1-32.
  • 8[9]Michalewicz Z,Eaguvel S, et al. The spirit of evolutionary algorithms[J]. J of Computing and Information Technology,1999,7(1): 1-18.
  • 9[11]Schoenauer M,Michalewicz Z. Boundary operators for constrained optimization problems[A]. Proc of the 7th Int Conf on Genetic Algorithms[C]. CA: Morgan Kaufman Publishers,1997.322-329.

共引文献2

同被引文献481

引证文献49

二级引证文献446

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部