摘要
将行波变换替换为更一般的函数变换 ,推广了修正的Jacobi椭圆函数展开方法 .给出了非线性Klein Gordon方程新的周期解 .当模m→ 1或m→ 0时 ,这些解退化成相应的孤立波解、三角函数解和奇异的行波解 .对于某些非线性方程 ,在一定条件下一般变换退化为行波约化 .
Using the travelling wave transformation instead of the more general function transformation, the modified Jacobi elliptic function expansion method is improved. Some new periodic solutions of nolinear Klein-Gordon equation are obtained using this method. When modulus m -> 1 or m -> 0, these periodic solutions degenerate to the corresponding solitary wave solutions, trigonometric function solutions or irregular travelling wave solutions. For some nonlinear equations I the general transformation would degenerate to the travelling wave reduction under certain conditions.
出处
《物理学报》
SCIE
EI
CAS
CSCD
北大核心
2005年第4期1481-1484,共4页
Acta Physica Sinica