期刊文献+
共找到61篇文章
< 1 2 4 >
每页显示 20 50 100
Two-Layer Non-Hydrostatic Model for Generation and Propagation of Interfacial Waves
1
作者 S.R.Pudjaprasetya I.Magdalena 《China Ocean Engineering》 SCIE EI CSCD 2019年第1期65-72,共8页
When pycnocline thickness of ocean density is relatively small, density stratification can be well represented as a two-layer system. In this article, a depth integrated model of the two-layer fluid with constant dens... When pycnocline thickness of ocean density is relatively small, density stratification can be well represented as a two-layer system. In this article, a depth integrated model of the two-layer fluid with constant density is considered,and a variant of the edge-based non-hydrostatic numerical scheme is formulated. The resulting scheme is very efficient since it resolves the vertical fluid depth only in two layers. Despite using just two layers, the numerical dispersion is shown to agree with the analytical dispersion curves over a wide range of kd, where k is the wave number and d the water depth. The scheme was tested by simulating an interfacial solitary wave propagating over a flat bottom, as well as over a bottom step. On a laboratory scale, the formation of an interfacial wave is simulated,which also shows the interaction of wave with a triangular bathymetry. Then, a case study using the Lombok Strait topography is discussed, and the results show the development of an interfacial wave due to a strong current passing through a sill. 展开更多
关键词 INTERFACIAL WAVES two-layer non-hydrostatic model DISPERSION RELATION
在线阅读 下载PDF
Improved Diurnal Cycle of Precipitation on Land in a Global Non-Hydrostatic Model Using a Revised NSAS Deep Convective Scheme 被引量:1
2
作者 Yifan ZHAO Xindong PENG +1 位作者 Xiaohan LI Siyuan CHEN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第6期1217-1234,共18页
In relatively coarse-resolution atmospheric models,cumulus parameterization helps account for the effect of subgridscale convection,which produces supplemental rainfall to the grid-scale precipitation and impacts the ... In relatively coarse-resolution atmospheric models,cumulus parameterization helps account for the effect of subgridscale convection,which produces supplemental rainfall to the grid-scale precipitation and impacts the diurnal cycle of precipitation.In this study,the diurnal cycle of precipitation was studied using the new simplified Arakawa-Schubert scheme in a global non-hydrostatic atmospheric model,i.e.,the Yin-Yang-grid Unified Model for the Atmosphere.Two new diagnostic closures and a convective trigger function were suggested to emphasize the job of the cloud work function corresponding to the free tropospheric large-scale forcing.Numerical results of the 0.25-degree model in 3-month batched real-case simulations revealed an improvement in the diurnal precipitation variation by using a revised trigger function with an enhanced dynamical constraint on the convective initiation and a suitable threshold of the trigger.By reducing the occurrence of convection during peak solar radiation hours,the revised scheme was shown to be effective in delaying the appearance of early-afternoon rainfall peaks over most land areas and accentuating the nocturnal peaks that were wrongly concealed by the more substantial afternoon peak.In addition,the revised scheme enhanced the simulation capability of the precipitation probability density function,such as increasing the extremely low-and high-intensity precipitation events and decreasing small and moderate rainfall events,which contributed to the reduction of precipitation bias over mid-latitude and tropical land areas. 展开更多
关键词 cumulus parameterization diurnal cycle of precipitation large-scale dynamic forcing global non-hydrostatic atmospheric model performance verification
在线阅读 下载PDF
Joint inversion of gravity and magnetic data for a two-layer model 被引量:1
3
作者 江凡 吴健生 王家林 《Applied Geophysics》 SCIE CSCD 2008年第4期331-339,共9页
Based on the synchronous joint gravity and magnetic inversion of single interface by Pilkington and the need of revealing Cenozoic and crystalline basement thickness in the new round of oil-gas exploration, we propose... Based on the synchronous joint gravity and magnetic inversion of single interface by Pilkington and the need of revealing Cenozoic and crystalline basement thickness in the new round of oil-gas exploration, we propose a joint gravity and magnetic inversion methodfor two-layer models by concentrating on the relationship between the change of thicknessI and position of the middle layer and anomaly and discuss the effects of the key parameters. Model tests and application to field data show the validity of this method. 展开更多
关键词 two-layer model joint inversion of gravity and magnetic data Cenozoic andcrystalline basement
在线阅读 下载PDF
Asymptotic solution of a weak nonlinear model for the mid-latitude stationary wind field of a two-layer barotropic ocean 被引量:8
4
作者 林万涛 张宇 莫嘉琪 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第3期72-78,共7页
A weak nonlinear model of a two-layer barotropic ocean with Rayleigh dissipation is built.The analytic asymptotic solution is derived in the mid-latitude stationary wind field,and the physical meaning of the correspon... A weak nonlinear model of a two-layer barotropic ocean with Rayleigh dissipation is built.The analytic asymptotic solution is derived in the mid-latitude stationary wind field,and the physical meaning of the corresponding problem is discussed. 展开更多
关键词 two-layer barotropic ocean ocean model asymptotic solution
原文传递
Analysis and Evaluation of the Global Aerosol Optical Properties Simulated by an Online Aerosol-coupled Non-hydrostatic Icosahedral Atmospheric Model 被引量:3
5
作者 DAI Tie SHI Guangyu Teruyuki NAKAJIMA 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2015年第6期743-758,共16页
Aerosol optical properties are simulated using the Spectral Radiation Transport Model I~)r Aerosol Species (SPRINTARS) coupled with the Non-hydrostatic ICosahedral Atmospheric Model (NICAM). The 3-year global mea... Aerosol optical properties are simulated using the Spectral Radiation Transport Model I~)r Aerosol Species (SPRINTARS) coupled with the Non-hydrostatic ICosahedral Atmospheric Model (NICAM). The 3-year global mean all-sky aerosol optical thickness (AOT) at 550 nm, theAngstr/Sm Exponent (AE) based on AOTs at 440 and 870 nm, and the single scattering albedo (SSA) at 550 nm are estimated at 0.123, 0.657 and 0.944, respectively. For each aerosol species, the mean AOT is within the range of the AeroCom models. Both the modeled all-sky and clear-sky results are compared with observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Aerosol Robotic Network (AERONET). The simulated spatiotemporal distributions of all-sky AOTs can generally reproduce the MODIS retrievals, and the correlation and model skill can be slightly improved using the clear-sky results over most land regions. The differences between clear-sky and all-sky AOTs are larger over polluted regions. Compared with observations from AERONET, the modeled and observed all-sky AOTs and AEs are generally in reasonable agreement, whereas the SSA variation is not well captured. Although the spatiotemporal distributions of all-sky and clear-sky results are similar, the clear-sky results are generally better correlated with the observations. The clear-sky AOT and SSA are generally lower than the all-sky results, especially in those regions where the aerosol chemical composition is contributed to mostly by sulfate aerosol. The modeled clear-sky AE is larger than the all-sky AE over those regions dominated by hydrophilic aerosol, while the'opposite is found over regions dominated by hydrophobic aerosol. 展开更多
关键词 aerosol optical properties non-hydrostatic icosahedral atmospheric model Moderate Resolution Imaging Spec-troradiometer Aerosol Robotic Network
在线阅读 下载PDF
Effect of the Coefficient on the Performance of A Two-Layer Boussinesq- Type Model 被引量:2
6
作者 SUN Jia-wen LIU Zhong-bo +3 位作者 WANG Xing-gang FANG Ke-zhao DU Xin-yuan WANG Ping 《China Ocean Engineering》 SCIE EI CSCD 2021年第1期36-47,共12页
The coefficients embodied in a Boussinesq-type model are very important since they are determined to optimize the linear and nonlinear properties.In most conventional Boussinesq-type models,these coefficients are assi... The coefficients embodied in a Boussinesq-type model are very important since they are determined to optimize the linear and nonlinear properties.In most conventional Boussinesq-type models,these coefficients are assigned the specific values.As for the multi-layer Boussinesq-type models with the inclusion of the vertical velocity,however,the effect of the different values of these coefficients on linear and nonlinear performances has never been investigated yet.The present study focuses on a two-layer Boussinesq-type model with the highest spatial derivatives being 2 and theoretically and numerically examines the effect of the coefficient on model performance.Theoretical analysis show that different values for(0.13≤α≤0.25)do not have great effects on the high accuracy of the linear shoaling,linear phase celerity and even third-order nonlinearity for water depth range of 0<kh≤10(k is wave number and h is water depth).The corresponding errors using different values are restricted within 0.1%,0.1%and 1%for the linear shoaling amplitude,dispersion and nonlinear harmonics,respectively.Numerical tests including regular wave shoaling over mildly varying slope from deep to shallow water,regular wave propagation over submerged bar,bichromatic wave group and focusing wave propagation over deep water are conducted.The comparison between numerical results using different values of,experimental data and analytical solutions confirm the theoretical analysis.The flexibility and consistency of the two-layer Boussinesq-type model is therefore demonstrated theoretically and numerically. 展开更多
关键词 two-layer Boussinesq-type model dispersion nonlinear properties shoaling amplitude
在线阅读 下载PDF
A Hybrid Finite-Volume and Finite Difference Scheme for Depth- Integrated Non-Hydrostatic Model 被引量:1
7
作者 YIN- Jing SUN Jia-wen +2 位作者 WANG Xing-gang YU Yong-hai SUN Zhao-chen 《China Ocean Engineering》 SCIE EI CSCD 2017年第3期261-271,共11页
A depth-integrated, non-hydrostatic model with hybrid finite difference and finite volume numerical algorithm is proposed in this paper. By utilizing a fraction step method, the governing equations are decomposed into... A depth-integrated, non-hydrostatic model with hybrid finite difference and finite volume numerical algorithm is proposed in this paper. By utilizing a fraction step method, the governing equations are decomposed into hydrostatic and non-hydrostatic parts. The first part is solved by using the finite volume conservative discretization method, whilst the latter is considered by solving discretized Poisson-type equations with the finite difference method. The second-order accuracy, both in time and space, of the finite volume scheme is achieved by using an explicit predictor-correction step and linear construction of variable state in cells. The fluxes across the cell faces are computed in a Godunov-based manner by using MUSTA scheme. Slope and flux limiting technique is used to equip the algorithm with total variation dimensioning property for shock capturing purpose. Wave breaking is treated as a shock by switching off the non-hydrostatic pressure in the steep wave front locally. The model deals with moving wet/dry front in a simple way. Numerical experiments are conducted to verify the proposed model. 展开更多
关键词 non-hydrostatic model SHOCK-CAPTURING wave breaking finite volume method MUSTA scheme
在线阅读 下载PDF
Non-hydrostatic modelling of regular wave transformation and current circulation in an idealized reef-lagoon-channel system 被引量:1
8
作者 Jian Shi Wei Liu +2 位作者 Jinhai Zheng Chi Zhang Xiangming Cao 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2022年第10期1-13,共13页
The wave-induced setup and circulation in a two dimensional horizontal(2DH)reef-lagoon-channel system is investigated by a non-hydrostatic model.The simulated results agree well with observations from the laboratory e... The wave-induced setup and circulation in a two dimensional horizontal(2DH)reef-lagoon-channel system is investigated by a non-hydrostatic model.The simulated results agree well with observations from the laboratory experiments,revealing that the model is valid in simulating wave transformation and currents over reefs.The effects of incident wave height,period,and reef flat water depth on the mean sea level and wave-driven currents are examined.Results show that the distributions of mean sea level and current velocities on the reef flat adjacent to the channel vary significantly from those in the area close to the side walls.From the wave averaged current field,an obvious alongshore flux flowing from the reef flat to the channel is captured.The flux from the reef flat composes the second source of the offshore rip current,while the first source is from the lagoon.A detailed momentum balance analysis shows that the alongshore current is mainly induced by the pressure gradient between the reef flat and the channel.In the lagoon,the momentum balances are between the pressure and radiation stress gradient,which drives flow towards the channel.Along the channel,the offshore current is mainly driven by the pressure gradient. 展开更多
关键词 non-hydrostatic model wave setup wave-induced current coral reef reef-lagoon-channel system
在线阅读 下载PDF
A Higher-Efficient Non-Hydrostatic Finite Volume Model for Strong Three-Dimensional Free Surface Flows and Sediment Transport 被引量:1
9
作者 LIU Xin MA Dian-guang ZHANG Qing-he 《China Ocean Engineering》 SCIE EI CSCD 2017年第6期736-746,共11页
In order to accurately simulate strong three-dimensional (3-D) free surface flows and sediment transport, the fully 3- D non-hydrostatic pressure models are developed based on the incompressible Navier-Stokes equati... In order to accurately simulate strong three-dimensional (3-D) free surface flows and sediment transport, the fully 3- D non-hydrostatic pressure models are developed based on the incompressible Navier-Stokes equations and convection-diffusion equation of sediment concentration with the mixing triangle and quadrilateral grids. The governing equations are discretized with the unstructured finite volume method in order to provide conservation properties of mass and momentum, and flexibility with practical application. It is shown that it is first-order accurate on nonuniform plane two-dimensional (2-D) grids and second-order accurate on uniform plane grids. A third-order approximation of the vertical velocity at the top-layer is applied. In such a way, free surface zero stress boundary condition is satisfied maturely, and very few vertical layers are needed to give an accurate solution even for complex discontinuous flow and short wave simulation. The model is applied to four examples to simulate strong 3-D free surface flows and sediment transport where non-hydrostatic pressures have a considerable effect on the velocity field. The newly developed model is verified against analytical solutions with an excellent agreement. 展开更多
关键词 higher-efficient non-hydrostatic strong 3-D free surface flows sediment transport 3-D numerical model
在线阅读 下载PDF
Numerical Analysis of the Nonlinear Parameterization of Waves in Currents over a Submerged Sill with a Non-Hydrostatic Model
10
作者 MA Xlaozhou MA Yuxiang +1 位作者 GAO Yunpeng DONG Guohai 《Journal of Ocean University of China》 SCIE CAS CSCD 2017年第4期689-696,共8页
An investigation of the effects of a uniform current strength direction(following or opposing wave propagation) on the nonlinear transformation of irregular waves over a submerged trapezoidal sill is carried out using... An investigation of the effects of a uniform current strength direction(following or opposing wave propagation) on the nonlinear transformation of irregular waves over a submerged trapezoidal sill is carried out using SWASH,a non-hydrostatic numerical wave model.The nonlinear parameters(i.e.,asymmetry,skewness,and kurtosis) are calculated,and the empirical formulas for these parameters are presented as a function of the local Ursell number based on the present numerical data measured.In the shoaling area of the submerged sill,the nonlinear characteristics of waves are more obvious when waves propagate in the same direction as the currents than when waves propagate in the opposite direction.Whereas nonlinear parameters grow with the strengthening of the following currents over the crest,they tend to decrease as the adverse current velocity increases over the crest area of the submerged sill. 展开更多
关键词 wave-current interaction shallow water nonlinear characteristic parameters non-hydrostatic water-current model
在线阅读 下载PDF
Vertical two-dimensional non-hydrostatic pressure model with single layer
11
作者 康玲 郭晓明 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2013年第6期721-730,共10页
The vertical two-dimensional non-hydrostatic pressure models with multiple layers can make prediction more accurate than those obtained by the hydrostatic pres- sure assumption. However, they are time-consuming and un... The vertical two-dimensional non-hydrostatic pressure models with multiple layers can make prediction more accurate than those obtained by the hydrostatic pres- sure assumption. However, they are time-consuming and unstable, which makes them unsuitable for wider application. In this study, an efficient model with a single layer is developed. Decomposing the pressure into the hydrostatic and dynamic components and integrating the x-momentum equation from the bottom to the free surface can yield a horizontal momentum equation, in which the terms relevant to the dynamic pressure are discretized semi-implicitly. The convective terms in the vertical momentum equation are ignored, and the rest of the equation is approximated with the Keller-box scheme. The velocities expressed as the unknown dynamic pressure are substituted into the continuity equation, resulting in a tri-diagonal linear system solved by the Thomas algorithm. The validation of solitary and sinusoidal waves indicates that the present model can provide comparable results to the models with multiple layers but at much lower computation cost. 展开更多
关键词 vertical two-dimensional model non-hydrostatic pressure single layer Thomas algorithm WAVE
在线阅读 下载PDF
Cooperative Caching Strategy Based on Two-Layer Caching Model for Remote Sensing Satellite Networks
12
作者 Rui Xu Xiaoqiang Di +3 位作者 Hao Luo Hui Qi Xiongwen He Wenping Lei 《Computers, Materials & Continua》 SCIE EI 2023年第5期3903-3922,共20页
In Information Centric Networking(ICN)where content is the object of exchange,in-network caching is a unique functional feature with the ability to handle data storage and distribution in remote sensing satellite netw... In Information Centric Networking(ICN)where content is the object of exchange,in-network caching is a unique functional feature with the ability to handle data storage and distribution in remote sensing satellite networks.Setting up cache space at any node enables users to access data nearby,thus relieving the processing pressure on the servers.However,the existing caching strategies still suffer from the lack of global planning of cache contents and low utilization of cache resources due to the lack of fine-grained division of cache contents.To address the issues mentioned,a cooperative caching strategy(CSTL)for remote sensing satellite networks based on a two-layer caching model is proposed.The two-layer caching model is constructed by setting up separate cache spaces in the satellite network and the ground station.Probabilistic caching of popular contents in the region at the ground station to reduce the access delay of users.A content classification method based on hierarchical division is proposed in the satellite network,and differential probabilistic caching is employed for different levels of content.The cached content is also dynamically adjusted by analyzing the subsequent changes in the popularity of the cached content.In the two-layer caching model,ground stations and satellite networks collaboratively cache to achieve global planning of cache contents,rationalize the utilization of cache resources,and reduce the propagation delay of remote sensing data.Simulation results show that the CSTL strategy not only has a high cache hit ratio compared with other caching strategies but also effectively reduces user request delay and server load,which satisfies the timeliness requirement of remote sensing data transmission. 展开更多
关键词 Information centric networking caching strategy two-layer caching model hierarchical division
在线阅读 下载PDF
Implementation of the Actuator Disc Approach in Modeling Three-Dimensional Full-Sized Tidal Turbines and Flow Interactions in an Idealized Channel
13
作者 Anas Abdul RAHMAN Vengatesan VENUGOPAL 《China Ocean Engineering》 2025年第3期504-517,共14页
A numerical investigation on the effectiveness of the actuator disc method in producing the interactions of multiple tidal stream devices via the 3D-RANS finite element model Telemac3D is explored. The methodology for... A numerical investigation on the effectiveness of the actuator disc method in producing the interactions of multiple tidal stream devices via the 3D-RANS finite element model Telemac3D is explored. The methodology for the implementation of the source term to represent an array of 20 m rotor diameter turbines deployed in an idealized channel is reviewed and discussed in detail. Flow interactions between multiple turbines are investigated for a single row arrangement with only two turbines and a two row arrangement containing three turbines. The results demonstrate that the non-hydrostatic solver shows better agreement when validated against published experimental data. Notably,the mesh density at the device location can strongly influence the simulated thrust from the disc. Although the actuator disc model can generally replicate the wake interactions well, the results indicate that it cannot accurately characterize the flow for regions with high turbulences. While a model setup with the largest lateral spacing(1.5D) demonstrates excellent agreement with the experimental data, the 0.5D model(smallest gap) deviates by up to 25%. These findings demonstrate the effectiveness of the applied source term in reproducing the wake profile, which is comparable with the published data, and highlight the inherent nature of the RANS and actuator disc models. 展开更多
关键词 velocity deficit wake characteristics device spacing non-hydrostatic model Telemac3D tidal turbine
在线阅读 下载PDF
Broadband diffuse optical spectroscopy of two-layered scattering media containing oxyhemoglobin,deoxyhemoglobin,water,and lipids 被引量:1
14
作者 Giles Blaney Martina Bottoni +2 位作者 Angelo Sassaroli Cristianne Fernandez Sergio Fantini 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2022年第3期92-106,共15页
We investigated the relationship between chromophore concentrations in two-layered scattering media and the apparent chromophore concentrations measured with broadband optical spectroscopy in conjunction with commonly... We investigated the relationship between chromophore concentrations in two-layered scattering media and the apparent chromophore concentrations measured with broadband optical spectroscopy in conjunction with commonly used homogeneous medium inverse models.We used diffusion theory to generate optical data from a two-layered distribution of relevant tissue absorbers,namely,oxyhemoglobin,deoxyhemoglobin,water,and lipids,with a top-layer thickness in the range 1–15 mm.The generated data consisted of broadband continuous-wave(CW)diffuse reflectance in the wavelength range 650–1024 nm,and frequency-domain(FD)diffuse reflectance at 690 and 830 nm;two source-detector distances of 25 and 35mm were used to simulate a dual-slope technique.The data were inverted using diffusion theory for a semi-infinite homogeneous medium to generate reduced scattering coeffcients at 690 and 830nm(from FD data)and effective absorption spectra in the range 650–1024nm(from CW data).The absorption spectra were then converted into effective total concentration and oxygen saturation of hemoglobin,as well as water and lipid concentrations.For absolute values,it was found that the effective hemoglobin parameters are typically representative of the bottom layer,whereas water and lipid represent some average of the respective concentrations in the two layers.For concentration changes,lipid showed a significant cross-talk with other absorber concentrations,thus indicating that lipid dynamics obtained in these conditions may not be reliable.These systematic simulations of broadband spectroscopy of two-layered media provide guidance on how to interpret effective optical properties measured with similar instrumental setups under the assumption of medium homogeneity. 展开更多
关键词 Broadband spectroscopy two-layer medium heterogeneous forward model homo-geneous inverse model partial-volume effect
原文传递
Theoretical Permeability of Two-layered Nonwoven Geotextiles 被引量:1
15
作者 刘丽芳 储才元 《Journal of Donghua University(English Edition)》 EI CAS 2006年第3期71-73,共3页
The two-layered nonwoven geotextile, which consists of a layer constructed with fine fibers for providing optimal filtration characteristics and another layer constructed with coarse fibers for providing the required ... The two-layered nonwoven geotextile, which consists of a layer constructed with fine fibers for providing optimal filtration characteristics and another layer constructed with coarse fibers for providing the required mechanical properties, is desirable for drainage and filtration system. Based on Darcy’s law and drag force theory, a mathematical model on vertical permeability coefficient of two-layered nonwoven geotextile is estabilished. Comparison with experimental results shows that the present model possesses 83.6% accuracy for needle-punched two-layered nonwoven geotextiles. And experimental results also show that with the increasing of needle density the vertical permeability coefficient of two-layered nonwoven geotextiless firstly decreases and then increases, reaching the smallest value at 470 p/cm2. 展开更多
关键词 permeability property vertical permeabilitycoefficient drag-force model two-layered nonwovengeotextiles.
在线阅读 下载PDF
Research in Moisture Transport through One and Two-layered Porous Composites
16
作者 Kemal Ahmet 《International Journal of Automation and computing》 EI 2005年第1期93-100,共8页
Research into the moisture transport processes in porous materials is primarily important for theoretical modelling and industrial applications in the design of energy saving buildings and living environments, etc. Ba... Research into the moisture transport processes in porous materials is primarily important for theoretical modelling and industrial applications in the design of energy saving buildings and living environments, etc. Based on experimental investigation, we propose new models which describe one-dimensional transport through one-layered uniform materials and dissimilar two-layered composites. Diffusivity as a function of moisture content is obtained through a Boltzman transformation, master curves, and combined numerical and regression techniques. Transport processes in one and two-layered composites are simulated on the basis of extended unsaturated Darcy’s Law using the finite element method (FEM). Simulation results show significantly different transport patterns of moisture profile when moisture migrates in different directions, and high agreement with experimental moisture profiles. Keywords Porous materials - moisture transport - two-layered composites - modelling and simulation Qingguo Wang graduated from Hebei Normal University, China, in 1985. He received the M.Sc. degree from Beijing Petroleum University in 1988 and the Ph.D. degree from the University of Luton, UK, in 2005. He is currently a Research Associate in the Department of Electrical Engineering and Electronics at the University of Liverpool, UK and an Associate Professor of Shijiazhuang Mechanical Engineering College, China. His research interests include measurement and control, mass and heat transportation, EMC, etc.Kemal Ahmet graduated in physics from the University of Leeds. Following the completion of his masters degree, he completed his Ph.D. at the University of London in the area of nuclear instrumentation in 1992. Until recently, he was a Principal Lecturer at the University of Luton, leading a research group in moisture instrumentation, measurement and monitoring. In 2004 he joined Medtronic, world leader in medical technology, and is currently working in the Neurologic Technologies division as a specialist in powered surgical instrumentation.Young Yue is a Principal Lecturer at the University of Luton, UK. He holds a B.Sc. in mechanical engineering from the Northeastern University, China, and a Ph.D. from Heriot-Watt University, UK. He is a chartered engineer and a member of the Institution of Mechanical Engineers, UK. Dr. Yue has been working in academia for 15 years following his 8 years of industrial experience. His main research interests are CAD/CAM, geometric modelling, virtual reality, and pattern recognition. He has over 70 publications in refereed books, journals and conferences. 展开更多
关键词 Porous materials moisture transport two-layered composites modelling and simulation
在线阅读 下载PDF
Numerical solutions of rotational normal modes of a triaxial two-layered anelastic Earth
17
作者 Wenbin Shen Zhuo Yang +1 位作者 Zhiliang Guo Wenying Zhang 《Geodesy and Geodynamics》 2019年第2期118-129,共12页
The Earth's rotational normal modes depend on Earth model used, including the layer structures,principal inertia moments of different layers and the compliances. This study focuses on providing numerical solution ... The Earth's rotational normal modes depend on Earth model used, including the layer structures,principal inertia moments of different layers and the compliances. This study focuses on providing numerical solution of the rotational normal modes of a triaxial two-layered anelastic Earth model without external forces but with considering the complex forms of compliances and the electromagnetic coupling between the core and mantle. Based on the present knowledge of the Chandler wobble(CW) and Free Core Nutation(FCN), we provide a set of complete compliances which could be used for reference in further investigations. There are eight rotational normal mode solutions, four of which might exist in nature. However, in reality only two of these four solutions correspond to the present motion status of the prograde CW and the retrograde FCN. On one hand, our numerical calculations show that the periods and quality factors(Qs) of CW and FCN are respectively 434.90 and 429.86 mean solar days(d) and 76.56 and 23988.47 under frequency-dependent assumption, and the triaxiality prolongs CW about 0.01 d and has hardly effect on FCN. On the other hand, we analyze the sensibility of compliances and electromagnetic coupling parameter on the periods and Qs of CW and FCN and find the sensitive parameters with respect to them. 展开更多
关键词 EARTH ROTATION TRIAXIAL two-layered anelastic EARTH model Compliances ROTATIONAL normal MODES Numerical solution
原文传递
Simulation of wave scattering over a floating platform in the ocean with a coupled CFD-IBM model
18
作者 Pengxuan Luo Jingxin Zhang +1 位作者 Yongyong Cao Shaohong Song 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2024年第3期157-161,共5页
A numerical study of linear wave scattering over a floating platform has been simulated by an efficient numericalmodel in this letter.The non-hydrostatic model is used to simulate the free surface and the uneven botto... A numerical study of linear wave scattering over a floating platform has been simulated by an efficient numericalmodel in this letter.The non-hydrostatic model is used to simulate the free surface and the uneven bottom.For thesolid body modelling,the immersed boundary method(IBM)is implemented by introducing a virtual boundaryforce into the momentum equations to emulate the boundary conditions.This implementation enhances theability of the model to simulate interactions between waves and floating structures.A numerical case involvingwave interactions with a floating platform is studied to validate the numerical model.By simulating the wavepropagation,the numerical model captures the variation of the wave scattering very well,which verifies theperformance of the numerical model and the robust strategy of the IBM. 展开更多
关键词 non-hydrostatic model Immersed boundary method Wave structure interaction Floating platform
在线阅读 下载PDF
High-resolution tsunami hazard assessment for the Guangdong-Hong Kong-Macao Greater Bay Area based on a non-hydrostatic tsunami model
19
作者 Yifan ZHU Chao AN +2 位作者 Houyun YU Wei ZHANG Xiaofei CHEN 《Science China Earth Sciences》 SCIE EI CAS CSCD 2024年第7期2326-2351,共26页
The Guangdong-Hong Kong-Macao Greater Bay Area(GBA)is threatened by potential tsunami hazards from the Littoral Fault Zone(LFZ)and the Manila subduction zone(MSZ),and may suffer huge damage because of its dense popula... The Guangdong-Hong Kong-Macao Greater Bay Area(GBA)is threatened by potential tsunami hazards from the Littoral Fault Zone(LFZ)and the Manila subduction zone(MSZ),and may suffer huge damage because of its dense population,concentrated infrastructure,and low-lying coasts.Previous tsunami studies for the GBA made simple assumptions on the mechanisms of LFZ earthquakes,and used coarse bathymetry data in tsunami simulation,which limited the prediction of detailed tsunami hazard characteristics.In this paper,we develop a parallel dispersive tsunami model PCOMCOT to efficiently simulate dispersive,nonlinear,and breaking tsunami waves.We also construct large-scale and high-resolution bathymetry models for the GBA by correcting and integrating various data sources.Dynamic rupture simulation is performed for the LFZ to obtain a more reliable earthquake source model.We propose several representative earthquake scenarios for the LFZ and MSZ,and use PCOMCOT to calculate the resulting tsunami waves,currents,and inundation in the GBA.Our results indicate that if an M_(w)7.5 oblique-slip earthquake occurs in the LFZ off the Pearl River Estuary(PRE),the subsequent tsunami will primarily impact Hong Kong,causing maximum positive and negative waves of around 1 m and -2 m,respectively,along with slightly destructive currents(≥1.5 m/s).An M_(w)9.0 MSZ megathrust earthquake can lead to widespread inundation with>1 m depth on the outlying islands of Macao and in the urban areas of Hong Kong around the Victoria Harbour.Besides,it will also cause catastrophic tsunami currents along the narrow waterways in Hong Kong and Macao,and the spatial distribution of strong currents(≥3 m/s)shows a considerable discrepancy from the areas of serious inundation.Thus,more attention should be paid to the potential impacts of tsunami currents on the GBA. 展开更多
关键词 Tsunami hazards Inundation Tsunami currents non-hydrostatic model Guangdong-Hong Kong-Macao Greater Bay Area
原文传递
Spatiotemporal distribution characteristics of clear-sky downward surface shortwave radiation in Xinjiang
20
作者 HUANG Guan CHEN Yonghang +4 位作者 WANG Pengtao FAN Ting HE Qing SHAO Weiling SUN Linlin 《Journal of Arid Land》 2025年第6期772-790,共19页
Given that Xinjiang Uygur Autonomous Region of China possesses exceptionally abundant solar radiation resources that can be harnessed to develop clean energy,accurately characterizing their spatiotemporal distribution... Given that Xinjiang Uygur Autonomous Region of China possesses exceptionally abundant solar radiation resources that can be harnessed to develop clean energy,accurately characterizing their spatiotemporal distribution is crucial.This study investigated the applicability of the Clouds and the Earth's Radiant Energy System(CERES)Single Scanner Footprint TOA/Surface Fluxes and Clouds(SSF)product downward surface shortwave radiation dataset(DSSRCER)under clear-sky conditions in Xinjiang.By integrating multi-source data and utilizing techniques like multivariate fitting and model simulation,we established a two-layer aerosol model and developed a clear-sky downward surface shortwave radiation(DSSR)retrieval model specific to Xinjiang using the Santa Barbara Discrete Atmospheric Radiative Transfer(SBDART)model.We further explored the spatiotemporal distribution characteristics of DSSR under clear-sky conditions in Xinjiang from 2017 to 2019 based on the localized DSSR retrieval model.Our findings revealed a significant discrepancy in DSSRCER under clear-sky conditions at the Xiaotang station in Xinjiang.By comparing,screening,and correcting core input parameters while incorporating the two-layer aerosol model,we achieved a more accurate SBDART simulated DSSR(DSSRSBD)compared to DSSRCER.The annual mean DSSR exhibited a distinct distribution pattern with high values in mountainous regions such as the Altay Mountains,Kunlun Mountains,and Tianshan Mountains and significantly lower values in adjacent lowland areas,including the Tarim River Basin and Junggar Basin.In the four typical administrative regions in northern Xinjiang,the annual mean DSSR(ranging from 551.60 to 586.09 W/m^(2))was lower than that in the five typical administrative regions in southern Xinjiang(ranging from 522.10 to 623.62 W/m^(2)).These spatial variations stem from a complex interplay of factors,including latitude,altitude,solar altitude angle,and sunshine duration.The variations in seasonal average DSSR aligned closely with variations in the solar altitude angle,with summer(774.76 W/m^(2))exhibiting the highest values,followed by spring(684.86 W/m^(2)),autumn(544.76 W/m^(2)),and winter(422.74 W/m^(2)).The monthly average DSSR showed a unimodal distribution,peaking in June(792.94 W/m^(2))and reaching its lowest level in December(363.06 W/m^(2)).Overall,our study findings enhance the current understanding of the spatiotemporal distribution characteristics of DSSR in Xinjiang and provide certain references for the management of clean energy development in this region. 展开更多
关键词 downward surface shortwave radiation(DSSR) clear-sky condition two-layer aerosol model Santa Barbara Discrete Atmospheric Radiative Transfer(SBDART) Clouds and the Earth's Radiant Energy System(CERES)
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部