Nanolipid carriers and traditional emulsion containing chemical sunscreens were prepared using emulsification combined with ultrasonic technology.The nanolipid carriers showed superior performance in sunscreen encapsu...Nanolipid carriers and traditional emulsion containing chemical sunscreens were prepared using emulsification combined with ultrasonic technology.The nanolipid carriers showed superior performance in sunscreen encapsulation,slow release and skin impermeability,and provided an excellent nanolipid slow-release encapsulation system for sunscreens.As observed by transmission electron microscopy,the nanolipid carriers were spherical shape,with smooth surface and uniform distribution,and the particle sizes were mainly concentrated in the range of 230 to 250 nm without agglomeration.The nanolipid carriers significantly improved the sunscreen performance through the synergistic effect of scattering and chemical absorption,and showed better UV stability than traditional sunscreen,indicating their photoprotective function.In vitro release experiments showed that the nano-lipidic carriers exhibited better release control when loaded with octyl methoxycinnamate(OMC)and butylmethoxydibenzoylmethane(BDFM)sunscreens than traditional traditional emulsions,with the cumulative release rate of OMC in the nano-lipidic carriers decreasing by 17.17% to 30.24% within 12 hours,and that of BDFM decreasing by 26.67% to 44.67%.26.67% to 44.16%.The results of the in vitro permeation experiment further confirmed that the nanolipid carriers could effectively encapsulate the sunscreens and prevent them from penetrating the skin barrier,thus reducing the skin irritation.Compared with traditional traditional emulsion,the cumulative penetration of OMC in nanostructured lipid carriers was 2.24μg/cm^(2)in 4 hours,while the cumulative penetration was reduced by 68.05%.The cumulative penetration of BDFM in the nanostructured lipid carrier was 3.24μg/cm^(2),with a 64.04%reduction in cumulative penetration.展开更多
Sunscreen agents derived from plants have been regarded as promising alternatives to artificial compounds.In this work,carbon dots(CDs)were prepared from carrot juice via a continuous microflowbased approach,where the...Sunscreen agents derived from plants have been regarded as promising alternatives to artificial compounds.In this work,carbon dots(CDs)were prepared from carrot juice via a continuous microflowbased approach,where the influence of process parameters was studied and optimized.Complimentary characterization revealed the CDs not only have small size,narrow size distribution,and good water solubility,but also have abundant functional groups as well as excellent UV absorption performance.Relying on these properties,the CDs were used as UV absorbers,suggesting they have strong long-term UV absorption ability over a broad pH range.The UV-absorption properties of the CDs were confirmed by incorporating the CDs in polyvinyl alcohol(PVA)to get C-CDs@PVA films of different thickness,in which significantly enhanced UV absorption performance was observed.Besides,the sun protection performance is also related to the film thickness.Afterwards,the practical application of the CDs was evaluated by adding them in a typical skin cream.With the addition of the CDs,the cream has drastically reduced UV transmittance in both UVA and UVB regions,and exhibits better UV absorption performance than commercial sunscreen agents.The CDs also demonstrated low cytotoxicity and high DPPH radical scavenging activity,making them promising as green sunscreen absorbers.This work is expected to provide a guidance for the development of green and effective natural sunscreen agents via microflowbased method.展开更多
UV-B(280-320 nm)sunscreening is crucial for lives on Earth.Examining the role of surrounding of UV-B ter understand UV-B absorption.screening molecules can help us better is ubiquitous in cells as the solvent,but its ...UV-B(280-320 nm)sunscreening is crucial for lives on Earth.Examining the role of surrounding of UV-B ter understand UV-B absorption.screening molecules can help us better is ubiquitous in cells as the solvent,but its impacts on UV-B absorption of sunscreen agents are underexplored.Herein,we report a firstprinciple study on UV-B absorption of sinapate malate(SM)and rele vant molecular species,with a focus on the solvent effect of water.The capability of UV-B screening by anions of SM,the proposed species for actual sunscreening,is shaped by water.Both the implicit water providing the dielectric environment of solvation and the explicit water molecules forming hydrogen bonding to SM anion can appreciably alter the nature of transition orbitals responsible to the UV-B absorption of the anion.Finally,we find the molecular dipole moment of an organic UV-B screening agent can be an indicator of its UV-B screening sensitivity to the surrounding water.Our work may serve as a starting point of developing new water-soluble UV-B screening agent.展开更多
15 chemical sunscreen agents in 220 batches of sun-proof products were tested,and the test results were checked with the product labels and approvals,and the problems found were compared and analyzed.There were some i...15 chemical sunscreen agents in 220 batches of sun-proof products were tested,and the test results were checked with the product labels and approvals,and the problems found were compared and analyzed.There were some inconsistencies among the actual ingredients,labeling ingredients and approval ingredients in the sun-proof products on the market,and the problem of insufficient input of raw materials was prominent.The supervision of this kind of products should be strengthened so as to reduce the safety risk of consumers using this kind of products.展开更多
选用CAPCELL PAK C18色谱柱为分离柱,柱温为30℃,进样体积为10.0μL,并用不同比例的(A)甲醇、(B)四氢呋喃和(C)0.008 2mol·L^-1高氯酸溶液的混合液作为流动相,按程序梯度洗脱模式对市售防晒产品中所用的15种防晒剂的标准品进行色...选用CAPCELL PAK C18色谱柱为分离柱,柱温为30℃,进样体积为10.0μL,并用不同比例的(A)甲醇、(B)四氢呋喃和(C)0.008 2mol·L^-1高氯酸溶液的混合液作为流动相,按程序梯度洗脱模式对市售防晒产品中所用的15种防晒剂的标准品进行色谱分离,并在波长311nm处进行紫外检测。实样分析时,称取样品0.25g,用甲醇、四氢呋喃、水和高氯酸(体积比为250∶450∶300∶0.2)的混合液(以下简称混合溶剂)15 mL超声提取30 min,用混合溶剂定容至25.0mL,离心10min,分取上清液1.0mL,加入混合溶剂定容至10.0mL,经0.45μm滤膜过滤,取滤液按仪器工作条件进行高效液相色谱分析。结果表明:所测定的15种防晒剂在一定的质量浓度范围内与其对应的峰面积呈线性关系。选定其中的二苯酮-3为参照物,并根据其余14种化合物的质量浓度和峰面积计算了各化合物的相对校正因子和相对保留时间等参数,确定了用一测多评法(QAMS)测定防晒产品中15种防晒剂的条件。还对色谱柱的型号、色谱仪器的型号以及柱温、进样量等对相对校正因子和保留时间可能产生影响的因素进行了系统试验。证明了在选定的色谱柱型号的前提下,用QAMS方法可实现防晒产品中15种防晒剂含量的同时测定。应用QAMS方法测定了6个批次防晒产品中的防晒剂含量,所得结果与用标准曲线法计算的结果基本一致,表明QAMS方法在降低检测成本和节省检测时间方面效果显著。展开更多
文摘Nanolipid carriers and traditional emulsion containing chemical sunscreens were prepared using emulsification combined with ultrasonic technology.The nanolipid carriers showed superior performance in sunscreen encapsulation,slow release and skin impermeability,and provided an excellent nanolipid slow-release encapsulation system for sunscreens.As observed by transmission electron microscopy,the nanolipid carriers were spherical shape,with smooth surface and uniform distribution,and the particle sizes were mainly concentrated in the range of 230 to 250 nm without agglomeration.The nanolipid carriers significantly improved the sunscreen performance through the synergistic effect of scattering and chemical absorption,and showed better UV stability than traditional sunscreen,indicating their photoprotective function.In vitro release experiments showed that the nano-lipidic carriers exhibited better release control when loaded with octyl methoxycinnamate(OMC)and butylmethoxydibenzoylmethane(BDFM)sunscreens than traditional traditional emulsions,with the cumulative release rate of OMC in the nano-lipidic carriers decreasing by 17.17% to 30.24% within 12 hours,and that of BDFM decreasing by 26.67% to 44.67%.26.67% to 44.16%.The results of the in vitro permeation experiment further confirmed that the nanolipid carriers could effectively encapsulate the sunscreens and prevent them from penetrating the skin barrier,thus reducing the skin irritation.Compared with traditional traditional emulsion,the cumulative penetration of OMC in nanostructured lipid carriers was 2.24μg/cm^(2)in 4 hours,while the cumulative penetration was reduced by 68.05%.The cumulative penetration of BDFM in the nanostructured lipid carrier was 3.24μg/cm^(2),with a 64.04%reduction in cumulative penetration.
基金National Natural Science Foundation of China(22078125)Postdoctoral Science Foundation of China(2023M741472)Fundamental Research Funds for the Central Universities(JUSRP622038).
文摘Sunscreen agents derived from plants have been regarded as promising alternatives to artificial compounds.In this work,carbon dots(CDs)were prepared from carrot juice via a continuous microflowbased approach,where the influence of process parameters was studied and optimized.Complimentary characterization revealed the CDs not only have small size,narrow size distribution,and good water solubility,but also have abundant functional groups as well as excellent UV absorption performance.Relying on these properties,the CDs were used as UV absorbers,suggesting they have strong long-term UV absorption ability over a broad pH range.The UV-absorption properties of the CDs were confirmed by incorporating the CDs in polyvinyl alcohol(PVA)to get C-CDs@PVA films of different thickness,in which significantly enhanced UV absorption performance was observed.Besides,the sun protection performance is also related to the film thickness.Afterwards,the practical application of the CDs was evaluated by adding them in a typical skin cream.With the addition of the CDs,the cream has drastically reduced UV transmittance in both UVA and UVB regions,and exhibits better UV absorption performance than commercial sunscreen agents.The CDs also demonstrated low cytotoxicity and high DPPH radical scavenging activity,making them promising as green sunscreen absorbers.This work is expected to provide a guidance for the development of green and effective natural sunscreen agents via microflowbased method.
基金supported by the National Key Research and Development Program of China(2018YFA0208702)the National Natural Science Foundation of China(No.22025304 and No.22033007)Guozhen Zhang is grateful for the start-up funding of University of Science and Technology of China.The numerical calculations in this work have been done in the Supercomputing Center of University of Science and Technology of China.
文摘UV-B(280-320 nm)sunscreening is crucial for lives on Earth.Examining the role of surrounding of UV-B ter understand UV-B absorption.screening molecules can help us better is ubiquitous in cells as the solvent,but its impacts on UV-B absorption of sunscreen agents are underexplored.Herein,we report a firstprinciple study on UV-B absorption of sinapate malate(SM)and rele vant molecular species,with a focus on the solvent effect of water.The capability of UV-B screening by anions of SM,the proposed species for actual sunscreening,is shaped by water.Both the implicit water providing the dielectric environment of solvation and the explicit water molecules forming hydrogen bonding to SM anion can appreciably alter the nature of transition orbitals responsible to the UV-B absorption of the anion.Finally,we find the molecular dipole moment of an organic UV-B screening agent can be an indicator of its UV-B screening sensitivity to the surrounding water.Our work may serve as a starting point of developing new water-soluble UV-B screening agent.
文摘15 chemical sunscreen agents in 220 batches of sun-proof products were tested,and the test results were checked with the product labels and approvals,and the problems found were compared and analyzed.There were some inconsistencies among the actual ingredients,labeling ingredients and approval ingredients in the sun-proof products on the market,and the problem of insufficient input of raw materials was prominent.The supervision of this kind of products should be strengthened so as to reduce the safety risk of consumers using this kind of products.