This paper presents the design, implementation and testing of an embedded system that integrates solar and storage energy resources to smart homes within the smart mierogrid. The proposed system provides the required ...This paper presents the design, implementation and testing of an embedded system that integrates solar and storage energy resources to smart homes within the smart mierogrid. The proposed system provides the required home energy by installing renewable energy and storage devices. It also manages and schedules the power flow during peak and off-peak periods. In addition, a two-way communication protocol is developed to enable the home owners and the utility service provider to improve the energy flow and the consumption efficiency. The system can be an integral part for homes in a smart grid or smart microgrid power networks. A prototype for the proposed system was designed, implemented and tested by using a controlled load bank to simulate a scaled random real house consumption behavior. Three different scenarios were tested and the results and findings are reported. Moreover, data flow security among the home, home owners and utility server is developed to minimize cyber-attaeks.展开更多
This paper discusses a distributed decision procedure for determining the electricity price for a real-time electricity market in an energy management system. The price decision algorithm proposed in this paper derive...This paper discusses a distributed decision procedure for determining the electricity price for a real-time electricity market in an energy management system. The price decision algorithm proposed in this paper derives the optimal electricity price while considering the constraints of a linearized AC power grid model. The algorithm is based on the power demand-supply balance and voltage phase differences in a power grid. In order to determine the optimal price that maximizes the social welfare distributively and to improve the convergence speed of the algorithm, the proposed algorithm updates the price through the alternating decision making of market participants. In this paper, we show the convergence of the price derived from our proposed algorithm. Furthermore, numerical simulation results show that the proposed dynamic pricing methodology is effective and that there is an improvement in the convergence speed, as compared with the conventional method.展开更多
文摘This paper presents the design, implementation and testing of an embedded system that integrates solar and storage energy resources to smart homes within the smart mierogrid. The proposed system provides the required home energy by installing renewable energy and storage devices. It also manages and schedules the power flow during peak and off-peak periods. In addition, a two-way communication protocol is developed to enable the home owners and the utility service provider to improve the energy flow and the consumption efficiency. The system can be an integral part for homes in a smart grid or smart microgrid power networks. A prototype for the proposed system was designed, implemented and tested by using a controlled load bank to simulate a scaled random real house consumption behavior. Three different scenarios were tested and the results and findings are reported. Moreover, data flow security among the home, home owners and utility server is developed to minimize cyber-attaeks.
基金supported by the Core Research for Evolutional Science and Technology,Japan Science and Technology Agency(JST-CREST)
文摘This paper discusses a distributed decision procedure for determining the electricity price for a real-time electricity market in an energy management system. The price decision algorithm proposed in this paper derives the optimal electricity price while considering the constraints of a linearized AC power grid model. The algorithm is based on the power demand-supply balance and voltage phase differences in a power grid. In order to determine the optimal price that maximizes the social welfare distributively and to improve the convergence speed of the algorithm, the proposed algorithm updates the price through the alternating decision making of market participants. In this paper, we show the convergence of the price derived from our proposed algorithm. Furthermore, numerical simulation results show that the proposed dynamic pricing methodology is effective and that there is an improvement in the convergence speed, as compared with the conventional method.