Chronic long-segment iliac artery occlusion represents a relatively rare and particularly severe form of iliac artery disease,often associated with complex anatomical challenges.When symptomatic,these patients are typ...Chronic long-segment iliac artery occlusion represents a relatively rare and particularly severe form of iliac artery disease,often associated with complex anatomical challenges.When symptomatic,these patients are typically candidates for surgical revascularization.展开更多
The fused quartz hemispherical resonator is the core component of the hemispherical resonator gyroscope.It features a complex shape and is Made from a Material that is difficult to process.Scratches are easily introdu...The fused quartz hemispherical resonator is the core component of the hemispherical resonator gyroscope.It features a complex shape and is Made from a Material that is difficult to process.Scratches are easily introduced during grinding,potentially degrading the mass-stiffness-damping symmetry;however,the underlying mechanisms of this influence have not been fully understood.This paper aims to investigate the effects of scratch defects on the frequency splitting and quality factor of the hemispherical resonator.First,finite element models of the hemispherical resonator with scratches are established.Then,the effects of the mass-stiffness factor,as well as the latitude and length of the scratches,on frequency splitting are analyzed.Furthermore,the impacts of latitude,length,and the first four harmonics of the unbalanced mass caused by scratches on thermoelastic damping and anchor loss are examined.Simulation results indicate that scratches above 55°latitude cause frequency splitting solely due to stiffness changes.Frequency splitting caused by scratches of the same size on the inherent rigidity shaft at the rim is approximately 50%of that near the transition fillet.Frequency splitting varies linearly with the volume of material removed by scratches.Scratches have little effect on thermoelastic damping.The first three harmonics of the unbalanced mass due to scratches at the rim are the primary contributors to anchor loss.Finally,focused ion beam trimming experiments are conducted at different locations on the hemispherical resonator.The trends observed in the experimental results are consistent with the simulation results.This work provides guidance for evaluating the impact of scratches on the performance of hemispherical resonators and for developing appropriate trimming processes.展开更多
Micro/nano hierarchical structures could endow materials with various surface functions.However,the multilayer and multiscale characteristics of micro/nano hierarchical structures bring difficulties for their one step...Micro/nano hierarchical structures could endow materials with various surface functions.However,the multilayer and multiscale characteristics of micro/nano hierarchical structures bring difficulties for their one step and controllable fabrication.Accordingly,based on tip-based fabrication techniques,this study proposed a micro-amplitude vibration-assisted scratching method by introducing a periodic backward displacement into the conventional scratching process,which enabled the synchronous creation of the microscale V-groove and nanoscale ripples,i.e.a typical micro/nano hierarchical structure.The experiments and finite element modeling were employed to explore the formation process and mechanism of the micro/nano hierarchical structures.Being different from conventional cutting,this method was mainly based on the plow mechanism,and it could accurately replicate the shape of the indenter on the material surface.The microscale V-groove was formed due to the scratching action,and the nanoscale ripple was formed due to the extrusion action of the indenter on the microscale V-groove’s surface.Furthermore,the relationships between the processing parameters and the dimensions of the micro/nano hierarchical structures were established through experiments,and optimized processing parameters were determined to achieve regular micro/nano hierarchical structures.By this method,complex patterns constructed by various micro/nano hierarchical structures were fabricated on both flat and curved surfaces,achieving diverse surface structural colors.展开更多
With increasing need of high quality movie, more and more standard resolution films are upconverted to the high-resolution films. After this operation, the defects exist in the old movie are more obvious because they ...With increasing need of high quality movie, more and more standard resolution films are upconverted to the high-resolution films. After this operation, the defects exist in the old movie are more obvious because they are enlarged in size, therefore, an efficient artifacts detection method with more precise result and lower computational complexity is in need. This paper provided a line scratch mathematical model, which derives from the Kokaram model and Bruni model, and then gave a detection method to meet the requirements of the high-resolution video application.展开更多
文摘Chronic long-segment iliac artery occlusion represents a relatively rare and particularly severe form of iliac artery disease,often associated with complex anatomical challenges.When symptomatic,these patients are typically candidates for surgical revascularization.
基金Supported by National Key Research and Development Program of China(Grant No.2022YFB3403600)the National Natural Science Foundation of China(Grant No.52305461)。
文摘The fused quartz hemispherical resonator is the core component of the hemispherical resonator gyroscope.It features a complex shape and is Made from a Material that is difficult to process.Scratches are easily introduced during grinding,potentially degrading the mass-stiffness-damping symmetry;however,the underlying mechanisms of this influence have not been fully understood.This paper aims to investigate the effects of scratch defects on the frequency splitting and quality factor of the hemispherical resonator.First,finite element models of the hemispherical resonator with scratches are established.Then,the effects of the mass-stiffness factor,as well as the latitude and length of the scratches,on frequency splitting are analyzed.Furthermore,the impacts of latitude,length,and the first four harmonics of the unbalanced mass caused by scratches on thermoelastic damping and anchor loss are examined.Simulation results indicate that scratches above 55°latitude cause frequency splitting solely due to stiffness changes.Frequency splitting caused by scratches of the same size on the inherent rigidity shaft at the rim is approximately 50%of that near the transition fillet.Frequency splitting varies linearly with the volume of material removed by scratches.Scratches have little effect on thermoelastic damping.The first three harmonics of the unbalanced mass due to scratches at the rim are the primary contributors to anchor loss.Finally,focused ion beam trimming experiments are conducted at different locations on the hemispherical resonator.The trends observed in the experimental results are consistent with the simulation results.This work provides guidance for evaluating the impact of scratches on the performance of hemispherical resonators and for developing appropriate trimming processes.
基金supported by the Jilin Province Key Research and Development Plan Project(20240302066GX)the National Natural Science Foundation of China(Grant No.52075221)the Fundamental Research Funds for the Central Universities(2023-JCXK-02)。
文摘Micro/nano hierarchical structures could endow materials with various surface functions.However,the multilayer and multiscale characteristics of micro/nano hierarchical structures bring difficulties for their one step and controllable fabrication.Accordingly,based on tip-based fabrication techniques,this study proposed a micro-amplitude vibration-assisted scratching method by introducing a periodic backward displacement into the conventional scratching process,which enabled the synchronous creation of the microscale V-groove and nanoscale ripples,i.e.a typical micro/nano hierarchical structure.The experiments and finite element modeling were employed to explore the formation process and mechanism of the micro/nano hierarchical structures.Being different from conventional cutting,this method was mainly based on the plow mechanism,and it could accurately replicate the shape of the indenter on the material surface.The microscale V-groove was formed due to the scratching action,and the nanoscale ripple was formed due to the extrusion action of the indenter on the microscale V-groove’s surface.Furthermore,the relationships between the processing parameters and the dimensions of the micro/nano hierarchical structures were established through experiments,and optimized processing parameters were determined to achieve regular micro/nano hierarchical structures.By this method,complex patterns constructed by various micro/nano hierarchical structures were fabricated on both flat and curved surfaces,achieving diverse surface structural colors.
文摘With increasing need of high quality movie, more and more standard resolution films are upconverted to the high-resolution films. After this operation, the defects exist in the old movie are more obvious because they are enlarged in size, therefore, an efficient artifacts detection method with more precise result and lower computational complexity is in need. This paper provided a line scratch mathematical model, which derives from the Kokaram model and Bruni model, and then gave a detection method to meet the requirements of the high-resolution video application.