The sulfation and decomposition process has proven effective in selectively extracting lithium from lepidolite.It is essential to clarify the thermochemical behavior and kinetic parameters of decomposition reactions.A...The sulfation and decomposition process has proven effective in selectively extracting lithium from lepidolite.It is essential to clarify the thermochemical behavior and kinetic parameters of decomposition reactions.Accordingly,comprehensive kinetic study by employing thermalgravimetric analysis at various heating rates was presented in this paper.Two main weight loss regions were observed during heating.The initial region corresponded to the dehydration of crystal water,whereas the subsequent region with overlapping peaks involved complex decomposition reactions.The overlapping peaks were separated into two individual reaction peaks and the activation energy of each peak was calculated using isoconversional kinetics methods.The activation energy of peak 1 exhibited a continual increase as the reaction conversion progressed,while that of peak 2 steadily decreased.The optimal kinetic models,identified as belonging to the random nucleation and subsequent growth category,provided valuable insights into the mechanism of the decomposition reactions.Furthermore,the adjustment factor was introduced to reconstruct the kinetic mechanism models,and the reconstructed models described the kinetic mechanism model more accurately for the decomposition reactions.This study enhanced the understanding of the thermochemical behavior and kinetic parameters of the lepidolite sulfation product decomposition reactions,further providing theoretical basis for promoting the selective extraction of lithium.展开更多
Metal halide perovskites(MHPs)with striking electrical and optical properties have appeared at the forefront of semiconductor materials for photocatalytic redox reactions but still suffer from some intrinsic drawbacks...Metal halide perovskites(MHPs)with striking electrical and optical properties have appeared at the forefront of semiconductor materials for photocatalytic redox reactions but still suffer from some intrinsic drawbacks such as inferior stability,severe charge-carrier recombination,and limited active sites.Heterojunctions have recently been widely constructed to improve light absorption,passivate surface for enhanced stability,and promote charge-carrier dynamics of MHPs.However,little attention has been paid to the review of MHPs-based heterojunctions for photocatalytic redox reactions.Here,recent advances of MHPs-based heterojunctions for photocatalytic redox reactions are highlighted.The structure,synthesis,and photophysical properties of MHPs-based heterojunctions are first introduced,including basic principles,categories(such as Schottky junction,type-I,type-II,Z-scheme,and S-scheme junction),and synthesis strategies.MHPs-based heterojunctions for photocatalytic redox reactions are then reviewed in four categories:H2evolution,CO_(2)reduction,pollutant degradation,and organic synthesis.The challenges and prospects in solar-light-driven redox reactions with MHPs-based heterojunctions in the future are finally discussed.展开更多
Three efficient methods for the synthesis of a series of Cu(Ⅱ) and Cu(Ⅰ) complexes based on imidazo[1,5-a]pyridine derivatives were developed.These methods include the following:(ⅰ)Cu(Ⅱ) salts were used as metal s...Three efficient methods for the synthesis of a series of Cu(Ⅱ) and Cu(Ⅰ) complexes based on imidazo[1,5-a]pyridine derivatives were developed.These methods include the following:(ⅰ)Cu(Ⅱ) salts were used as metal sources and N,N-dimethylformamide was employed as a solvent as well as a reductant to produce Cu(Ⅰ) complexes.(ⅱ) An iodide-containing compound was utilized as a ligand and iodide source to prepare complexes.An in situ metalligand reaction occurred and an iodide-bridged copper complex was generated.(ⅲ) A series of aldehydes were added to the reaction systems to induce in situ metal-ligand reactions between the aldehydes and the imidazo[1,5-a]pyridine derivatives,producing polydentate ligand scaffolds.Eight complexes were prepared and characterized.The catalytic activities of these complexes toward the ketalization of ketones by ethylene glycol were investigated.With the exception of complex4,the remaining seven complexes all showed high catalytic activity.The lower activity of 4 may be due to the larger radius of bridging iodide ions and the shorter Cu(Ⅰ)…Cu(Ⅰ) distance.CCDC:2357696,1·2CH_(2)Cl_(2);2357697,2;2018292,3;2092192,4;2092190,5;2155557,6;2406155,7;2406156,8·EtOH.展开更多
The Glauber/eikonal model is a widely used tool for studying intermediate-and high-energy nuclear reactions.When calculating the Glauber/eikonal model phase shift functions,the optical limit approximation(OLA)is often...The Glauber/eikonal model is a widely used tool for studying intermediate-and high-energy nuclear reactions.When calculating the Glauber/eikonal model phase shift functions,the optical limit approximation(OLA)is often used.The OLA neglects the multiple scattering of the constituent nucleons in the projectile and target nuclei.However,the nucleon-target version of the Glauber model(the NTG model)proposed by Abu-Ibrahim and Suzuki includes multiple scattering effects between the projectile nucleons and target nuclei.The NTG model was found to improve the description of the elastic scattering angular distributions and total reaction cross sections of some light heavy-ion systems with respect to the OLA.In this work,we study the single-nucleon removal reactions(SNRRs)induced by carbon isotopes on ^(12)C and ^(9)Be targets using both the NTG model and the OLA.Reduction factors(RFs)of the single-nucleon spectroscopic factors were obtained by comparing the experimental and theoretical SNRR cross sections.On average,the RFs obtained with the NTG model were smaller than those obtained using the OLA by 7.8%,in which the average difference in one-neutron removal was 10.6% and that in one-proton removal was 4.2%.However,the RFs were still strongly dependent on the neutron-proton asymmetryΔS of the projectile nuclei,even when the NTG model was used.展开更多
An improved method is proposed for the extraction of the symmetry energy coefficient relative to the temperature,a_(sym)/T,in the heavy-ion reactions near the Fermi energy region,based on the modified Fisher Model.Thi...An improved method is proposed for the extraction of the symmetry energy coefficient relative to the temperature,a_(sym)/T,in the heavy-ion reactions near the Fermi energy region,based on the modified Fisher Model.This method is applied to the primary fragments of antisymmetrized molecular dynamics(AMD)simulations for ^(46)Fe+^(46)Fe,^(40)Ca+^(40)Ca and ^(48)Ca+^(48)Ca at 35 MeV/nucleon,in order to make direct comparison to the results from the K(N,Z)method of Ono et al.In our improved method,the extracted values of a_(sym)/T increase as the size of isotopes increases whereas,in the K(N,Z)method,the results show rather constant behavior.This increase in our result is attributed to the surface contribution of the symmetry energy in finite nuclei.In order to evaluate the surface contribution,the relation a_(sym)/T=[a_(sym)^((V))(1-k_(S/V) A^(-1/3))]/T is applied and k_(S/V)=1.20~1.25 was extracted.This value is smaller than those extracted from the mass table,reflecting the weakened surface contribution at higher temperature regime.Δμ/T,the difference of the neutron-proton chemical potentials relative to the temperature,is also extracted in this method at the same time.The average values of the extractedΔμ/T,Δμ/T show a linear dependence on the proton-neutron a_(sym)metry parameter of the system,δ_(sys),andΔμ/T=(15.1±0.2)δ_(sys)-(0.5±0.1)is obtained.展开更多
Driving of the nuclear fusion reaction p+^(11)B3α+8.7 MeV under laboratory conditions by interaction between high-power laser pulses and matter has become a popular field of research,owing to its numerous potential a...Driving of the nuclear fusion reaction p+^(11)B3α+8.7 MeV under laboratory conditions by interaction between high-power laser pulses and matter has become a popular field of research,owing to its numerous potential applications:as an alternative to deuterium-tritium for fusion energy production,astrophysics studies,and alpha-particle generation for medical treatment.One possible scheme for laser-driven p-^(11)B reactions is to direct a beam of laser-accelerated protons onto a boron(B)sample(the so-called“pitcher-catcher”scheme).This technique has been successfully implemented on large high-energy lasers,yielding hundreds of joules per shot at low repetition.We present here a complementary approach,exploiting the high repetition rate of the VEGA III petawatt laser at CLPU(Spain),aiming at accumulating results from many interactions at much lower energy,to provide better control of the parameters and the statistics of the measurements.Despite a moderate energy per pulse,our experiment allowed exploration of the laser-driven fusion process with tens(up to hundreds)of laser shots.The experiment provided a clear signature of the reactions involved and of the fusion products,accumulated over many shots,leading to an improved optimization of the diagnostics for experimental campaigns of this type.In this paper,we discuss the effectiveness of laser-driven p-11B fusion in the pitcher-catcher scheme,at a high repetition rate,addressing the challenges of this experimental scheme and highlighting its critical aspects.Our proposed methodology allows evaluation of the performance of this scheme for laser-driven alpha particle production and can be adapted to high-repetition-rate laser facilities with higher energy and intensity.展开更多
Laser therapy is a widely accepted method for tattoo removal,fragmenting tattoo pigments for eventual clearance by the immune system.However,tattoos presenting with signs of allergic reactions—such as erythema,swelli...Laser therapy is a widely accepted method for tattoo removal,fragmenting tattoo pigments for eventual clearance by the immune system.However,tattoos presenting with signs of allergic reactions—such as erythema,swelling,pruritus,or localized dermatitis—pose unique challenges that contraindicate the use of laser treatments.This review explores clinical and immunological reasons why laser therapy should be avoided in tattoos manifesting allergic reactions,focusing on the exacerbation of symptoms,potential systemic hypersensitivity,and increased risk of severe adverse effects.Tattoo inks,particularly those containing red pigments,are known to induce delayed hypersensitivity reactions,driven by the body’s immune response to the injected foreign substances.Laser-induced breakdown of tattoo pigments can trigger an amplified allergic response due to the rapid release of pigment particles,which may further stimulate the immune system.Additionally,photomechanical fragmentation of tattoo inks during laser treatment increases the bioavailability of allergenic compounds,heightening the risk of severe inflammatory reactions and systemic dissemination of these allergens.Histological evidence suggests allergic reactions to tattoo inks are often granulomatous in nature,and the inflammatory environment created by laser therapy can exacerbate this granulomatous process,resulting in hypertrophic scarring or keloid formation.Moreover,patients with underlying allergic sensitivities to tattoo pigments are at an elevated risk of systemic complications,including generalized urticaria or angioedema,upon laser treatment.Current evidences suggests tattoos of allergic reactions should be not undergone laser therapy,emphasizing the need for alternative management strategies,such as topical application of corticosteroids or excision in severe cases.Clinicians must conduct a thorough pre-treatment assessment,including the patch testing,to identify potential allergenic inks and avoid laser-based interventions on reactive tattoos to prevent complications and safeguard patient's safety.展开更多
Geochemical reactions play a vital role in determining the efficiency of carbon capture,utilization,and storage combined with enhanced oil recovery(CCUS-EOR),particularly through their influence on reservoir propertie...Geochemical reactions play a vital role in determining the efficiency of carbon capture,utilization,and storage combined with enhanced oil recovery(CCUS-EOR),particularly through their influence on reservoir properties.To deepen the understanding of these mechanisms,this review investigates the interactions among injected CO_(2),formation fluids,and rock minerals and evaluates their implications for CCUS-EOR performance.The main results are summarized as follows.First,temperature,pressure,pH,and fluid composition are identified as key factors influencing mineral dissolution and precipitation,which in turn affect porosity,permeability,and CO_(2) storage.Second,carbonate minerals,such as calcite and dolomite,show high reactivity under lower temperature conditions,enhancing dissolution and permeability,while silicate minerals,including illite,kaolinite,quartz,and K-feldspar,are comparatively inert.Third,the formation of carbonic acid during CO_(2) injection promotes dissolution,whereas secondary precipitation,especially of clay minerals,can reduce pore connectivity and limit flow paths.Fourth,mineral transformation and salt precipitation can further modify reservoir characteristics,influencing both oil recovery and long-term CO_(2) trapping.Fifth,advanced experimental tools,such as Computed Tomography(CT)and Nuclear Magnetic Resonance(NMR)imaging,combined with geochemical modeling and reservoir simulation,are essential to predict petrophysical changes across scales.This review provides a theoretical foundation for integrating geochemical processes into CCUS-EOR design,offering technical support for field application and guiding sustainable CO_(2) management in oil reservoirs.展开更多
Accurate prediction of drug-induced adverse drug reactions(ADRs)is crucial for drug safety evaluation,as it directly impacts public health and safety.While various models have shown promising results in predicting ADR...Accurate prediction of drug-induced adverse drug reactions(ADRs)is crucial for drug safety evaluation,as it directly impacts public health and safety.While various models have shown promising results in predicting ADRs,their accuracy still needs improvement.Additionally,many existing models often lack interpretability when linking molecular structures to specific ADRs and frequently rely on manually selected molecular fingerprints,which can introduce bias.To address these challenges,we propose ToxBERT,an efficient transformer encoder model that leverages attention and masking mechanisms for simplified molecular input line entry system(SMILES)representations.Our results demonstrate that ToxBERT achieved area under the receiver operating characteristic curve(AUROC)scores of 0.839,0.759,and 0.664 for predicting drug-induced QT prolongation(DIQT),rhabdomyolysis,and liver injury,respectively,outperforming previous studies.Furthermore,ToxBERT can identify drug substructures that are closely associated with specific ADRs.These findings indicate that ToxBERT is not only a valuable tool for understanding the mechanisms underlying specific drug-induced ADRs but also for mitigating potential ADRs in the drug discovery pipeline.展开更多
Paclitaxel is one of the commonly used drugs in postoperative chemotherapy for ovarian cancer patients. However, affected by drug dosage and individual differences in the course of medication, patients will have diffe...Paclitaxel is one of the commonly used drugs in postoperative chemotherapy for ovarian cancer patients. However, affected by drug dosage and individual differences in the course of medication, patients will have different degrees of adverse reactions, which will cause damage to the patient’s body once they occur. This paper retrospectively analyzed the clinical data of patients with severe allergic reactions such as fecal incontinence and numbness of hands and feet caused by the use of paclitaxel liposome during postoperative chemotherapy in a case of ovarian cancer admitted to our hospital. The causes and corresponding treatment measures were analyzed, in order to provide the reference for medical staff to take effective countermeasures in advance in the future.展开更多
Objective:To monitor the incidence of immune-related adverse events(irAEs)in patients treated with immune checkpoint inhibitors(ICIs)and programmed cell death protein-1(PD-1),and to evaluate the effectiveness of nursi...Objective:To monitor the incidence of immune-related adverse events(irAEs)in patients treated with immune checkpoint inhibitors(ICIs)and programmed cell death protein-1(PD-1),and to evaluate the effectiveness of nursing interventions using a quantitative scoring system.Methods:A retrospective analysis was performed on 65 cancer patients who received PD-1 therapy at the Oncology Department of Baotou Cancer Hospital from December 2023 to December 2024.The study examined the clinical features and blood test results related to irAEs.The National Cancer Institute’s Common Terminology Criteria for Adverse Events(NCI-CTCAE)was used to grade the severity of these events,which were classified into five levels.Based on the NCI-CTCAE scores,appropriate nursing measures were implemented,and a comprehensive risk assessment framework was developed.Results:The study group showed lower complication rates,overall incidence,and average hospital stay compared to the control group(P<0.05).Among the 65 patients,twenty-eight(43.07%)experienced a total of 35 irAEs,with 2(5.71%)being grade 3 or 4.The most frequent irAEs were dermatological conditions(34.29%),particularly rash with itching.The occurrence of irAEs did not correlate with patient gender,age,blood parameters(hemoglobin,white blood cell count,platelet count,etc.),or liver function(P>0.05),but it was associated with tumor type(P<0.05).Conclusion:PD-1 treatment is generally safe,with a low incidence of severe(grade 3 or higher)irAEs.Close monitoring is essential to ensure early detection,intervention,and management of irAEs,thereby maintaining a low level of adverse events and enhancing the safety and efficacy of PD-1 therapy.Implementing a quantitative risk scoring system for nursing care can decrease the rate of complications,enhance patient safety,and potentially reduce hospital stays and medical costs.展开更多
Based on the Skyrme energy density functional and reaction Q-value,this study proposed an effective nucleus-nucleus poten-tial for describing the capture barrier in heavy-ion fusion processes.The 443 extracted barrier...Based on the Skyrme energy density functional and reaction Q-value,this study proposed an effective nucleus-nucleus poten-tial for describing the capture barrier in heavy-ion fusion processes.The 443 extracted barrier heights were well reproduced with a root-mean-square(RMS)error of 1.53 MeV,and the RMS deviations with respect to 144 time-dependent Hartree-Fock capture barrier heights were only 1.05 MeV.Coupled with the Siwek-Wilczyński formula,wherein three parameters were determined by the proposed effective potentials,the measured capture cross sections at energies around the barriers were reasonably well reproduced for several fusion reactions induced by nearly spherical nuclei as well as by nuclei with large deformations,such as^(154)Sm and^(238)U.The shallow capture pockets and small values of the average barrier radii resulted in the reduction of the capture cross sections for 52,54Cr-and 64 Ni-induced reactions,which were related to the synthesis of new super-heavy nuclei.展开更多
This paper, an addendum to “Dialectical Thermodynamics’ solution to the conceptual imbroglio that is the reversible path”, this journal, 10, 775-799, was written in response to the requests of several readers to pr...This paper, an addendum to “Dialectical Thermodynamics’ solution to the conceptual imbroglio that is the reversible path”, this journal, 10, 775-799, was written in response to the requests of several readers to provide further evidence of the said “imbroglio”. The evidence here presented relates to the incompatibility existing between the total-entropy and the Gibbs energy prescriptions for the reversible path. The previously published proof of the negentropic nature of the transformation of heat into work is here included to validate out conclusions about the Gibbs energy perspective.展开更多
Objective:To explore the adverse reactions associated with antibiotics and analyze strategies for their rational use.Methods:A retrospective analysis was conducted on 60 patients who experienced adverse reactions to a...Objective:To explore the adverse reactions associated with antibiotics and analyze strategies for their rational use.Methods:A retrospective analysis was conducted on 60 patients who experienced adverse reactions to antibiotics between August 2021 and August 2023.The types of antibiotics that caused adverse reactions were analyzed,and the symptoms of adverse reactions and measures for rational use of antibiotics were summarized.Results:Among the analyzed cases of adverse reactions to antibiotics,the highest rate was observed in patients aged 61–75 years,accounting for 38.33%,followed by patients aged 51–60 years,accounting for 20.00%.In terms of the types of antibiotics that caused adverse reactions,cephalosporins were the most common,accounting for 40.00%,followed by penicillins,accounting for 18.33%.Analysis of the systems involved in adverse reactions showed that skin and appendage disorders were the most common,accounting for 36.67%,followed by the digestive system,accounting for 28.33%.Conclusion:Irrational use of antibiotics can lead to adverse drug reactions.Therefore,it is necessary to analyze strategies for the rational use of antibiotics to reduce adverse drug reactions and ensure the safety of antibiotic use.展开更多
Microbially induced calcite precipitation(MICP)and Enzyme induced calcite precipitation(EICP)techniques were implemented to reinforce the large-scale calcareous sand in this study.Then a coupled numerical model to pre...Microbially induced calcite precipitation(MICP)and Enzyme induced calcite precipitation(EICP)techniques were implemented to reinforce the large-scale calcareous sand in this study.Then a coupled numerical model to predict the biochemical reactions and hydraulic characteristics of MICP and EICP reactions was proposed and verified by physical experiments.Results showed that:This model could describe the variations of bacteria,calcium,calcite,permeability over time reasonably.It is necessary to consider the influence of the calculation domain scale when simulating the convection-diffusionreaction in the multi-process of MICP and EICP reactions.The numerical and experimental values of calcite content are 0.841 g/cm^(3) and 0.861 g/cm^(3) for MICP-reinforced sand,0.263 g/cm^(3) and 0.227 g/cm^(3) for EICP-reinforced sand after 192 h of reaction.The reaction rate k_(rea) is an important parameter to control the calcite content.Accordingly,the permeability coefficient of MICP and EICP reinforced calcareous sand decreases by 32%and 18%.Due to the influence of substance transportation and calcite precipitation,the calcite shows a trend of decreasing firstly and then increasing with the enhancing of the initial permeability coefficient in biochemical reactions.The optimal injecting ratio q11:q12 in this study is 100:300 mL/min.The process for the application of MICP and EICP coupled numerical model is also recommended,which provides reference for engineering projects in ground improvement.展开更多
We investigate the impact of high-energy O ions on the occurrence of single-event burnout(SEB) in silicon carbide(Si C) metal–oxide–semiconductor field-effect transistors(MOSFETs) under various bias conditions. Thro...We investigate the impact of high-energy O ions on the occurrence of single-event burnout(SEB) in silicon carbide(Si C) metal–oxide–semiconductor field-effect transistors(MOSFETs) under various bias conditions. Through a combination of SRIM, GEANT4, and TCAD simulations, we explore the role of secondary ions generated by nuclear reactions between high-energy O ions and Si C materials. These secondary ions, with significantly higher linear energy transfer(LET) values, contribute to electron–hole pair generation, leading to SEB. Our results show that the energy deposition and penetration depth of these secondary ions, especially those with high LET, are sufficient to induce catastrophic SEB in Si C MOSFETs. The study also highlights the critical influence of reverse bias voltage on SEB occurrence and provides insights into the failure mechanisms induced by nuclear reactions with high-energy O ions. This work offers valuable understanding for improving the radiation resistance of Si C-based power devices used in space and high-radiation environments,contributing to the design of more reliable electronics for future space missions.展开更多
α-Trifluoromethyl ketones are a class of useful compounds with versatile applications.Their synthetic application via the transformation of the C—F bonds is of particular interest by allowing the synthesis of organi...α-Trifluoromethyl ketones are a class of useful compounds with versatile applications.Their synthetic application via the transformation of the C—F bonds is of particular interest by allowing the synthesis of organic compounds with diverse structures.Herein,the advances in the research areas ofα-trifluoromethyl ketone synthesis and their defluorination reactions are reviewed.Discussion on the mechanisms of the typical reactions has also been provided,in hope of affording some guides to the chemistry ofα-trifluoromethyl ketones in the synthetic methods toward themselves and their derivatives.展开更多
We explored new approaches to replace the nitrogen atoms of arsenic, antimony, bismuth, and discovered a new paths to modify Raschig, Schiff, Andrusov, Hofmann, Colbe, Delepine reactions with arsine, stibine and bismu...We explored new approaches to replace the nitrogen atoms of arsenic, antimony, bismuth, and discovered a new paths to modify Raschig, Schiff, Andrusov, Hofmann, Colbe, Delepine reactions with arsine, stibine and bismuthine in organometallic chemistry. We have proposed a new mechanism for possible reactions.展开更多
Chiral carbonyl compounds frequently occur in natural products and pharmaceuticals. Additionally, they serve as important intermediates in organic synthesis. Transition metal-catalyzed asymmetric carbonylative cross-c...Chiral carbonyl compounds frequently occur in natural products and pharmaceuticals. Additionally, they serve as important intermediates in organic synthesis. Transition metal-catalyzed asymmetric carbonylative cross-coupling reactions are among the most straightforward and effective methods for synthesizing chiral carbonyl compounds, including esters, amides, and ketones. The advances in asymmetric carbonylative cross-coupling reactions using various O-, N-, C-, and S-containing nucleophiles or electrophiles over the past decade are summarized.展开更多
The investigation of reaction kinetics is the key to understanding the nature of reaction processes.However,monitoring fast photochemical reactions by mass spectrometry remains challenging.Herein,we developed an optic...The investigation of reaction kinetics is the key to understanding the nature of reaction processes.However,monitoring fast photochemical reactions by mass spectrometry remains challenging.Herein,we developed an optical focusing inductive electrospray(OF-iESI)mass spectrometry platform for real-time and in-situ photoreaction monitoring.Coaxial irradiation from back of nanoelectrospray emitter with a taper section was utilized,so the emitter could act as optical lens to help achieving much larger optical power density at emitter tip compared to other sections,which allowed for in-situ reaction monitoring of photoreactions.Through theoretical calculations,the highest optical power density region volume was ca.45 nL.We also integrated a controller for the laser source(450 nm),enabling the modulation of pulse duration(>1 ms).This facilitates the study of photochemical reaction kinetics.The in-situ capability of this device was proved by capturing the short-lived photogenerated intermediates during the dehydrogenation of tetrahydroquinoline.This device was further used to investigate the kinetics of triplet energy transfer based Paternò-Büchi reaction.The reaction order has hitherto remained undetermined while the result of OF-iESI suggested it followed pseudo-second-order reaction kinetics.The short-lived donor-acceptor collision complex intermediate was also successfully identified by tandem mass spectrometry.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.52034002 and U2202254)the Fundamental Research Funds for the Central Universities,China(No.FRF-TT-19-001)。
文摘The sulfation and decomposition process has proven effective in selectively extracting lithium from lepidolite.It is essential to clarify the thermochemical behavior and kinetic parameters of decomposition reactions.Accordingly,comprehensive kinetic study by employing thermalgravimetric analysis at various heating rates was presented in this paper.Two main weight loss regions were observed during heating.The initial region corresponded to the dehydration of crystal water,whereas the subsequent region with overlapping peaks involved complex decomposition reactions.The overlapping peaks were separated into two individual reaction peaks and the activation energy of each peak was calculated using isoconversional kinetics methods.The activation energy of peak 1 exhibited a continual increase as the reaction conversion progressed,while that of peak 2 steadily decreased.The optimal kinetic models,identified as belonging to the random nucleation and subsequent growth category,provided valuable insights into the mechanism of the decomposition reactions.Furthermore,the adjustment factor was introduced to reconstruct the kinetic mechanism models,and the reconstructed models described the kinetic mechanism model more accurately for the decomposition reactions.This study enhanced the understanding of the thermochemical behavior and kinetic parameters of the lepidolite sulfation product decomposition reactions,further providing theoretical basis for promoting the selective extraction of lithium.
基金financially supported by National Natural Science Foundation of China(No.22302155)the Fundamental Research Funds of the Center Universities(No.D5000240188)the research program of ZJUT(YJY-ZS-20240001)。
文摘Metal halide perovskites(MHPs)with striking electrical and optical properties have appeared at the forefront of semiconductor materials for photocatalytic redox reactions but still suffer from some intrinsic drawbacks such as inferior stability,severe charge-carrier recombination,and limited active sites.Heterojunctions have recently been widely constructed to improve light absorption,passivate surface for enhanced stability,and promote charge-carrier dynamics of MHPs.However,little attention has been paid to the review of MHPs-based heterojunctions for photocatalytic redox reactions.Here,recent advances of MHPs-based heterojunctions for photocatalytic redox reactions are highlighted.The structure,synthesis,and photophysical properties of MHPs-based heterojunctions are first introduced,including basic principles,categories(such as Schottky junction,type-I,type-II,Z-scheme,and S-scheme junction),and synthesis strategies.MHPs-based heterojunctions for photocatalytic redox reactions are then reviewed in four categories:H2evolution,CO_(2)reduction,pollutant degradation,and organic synthesis.The challenges and prospects in solar-light-driven redox reactions with MHPs-based heterojunctions in the future are finally discussed.
文摘Three efficient methods for the synthesis of a series of Cu(Ⅱ) and Cu(Ⅰ) complexes based on imidazo[1,5-a]pyridine derivatives were developed.These methods include the following:(ⅰ)Cu(Ⅱ) salts were used as metal sources and N,N-dimethylformamide was employed as a solvent as well as a reductant to produce Cu(Ⅰ) complexes.(ⅱ) An iodide-containing compound was utilized as a ligand and iodide source to prepare complexes.An in situ metalligand reaction occurred and an iodide-bridged copper complex was generated.(ⅲ) A series of aldehydes were added to the reaction systems to induce in situ metal-ligand reactions between the aldehydes and the imidazo[1,5-a]pyridine derivatives,producing polydentate ligand scaffolds.Eight complexes were prepared and characterized.The catalytic activities of these complexes toward the ketalization of ketones by ethylene glycol were investigated.With the exception of complex4,the remaining seven complexes all showed high catalytic activity.The lower activity of 4 may be due to the larger radius of bridging iodide ions and the shorter Cu(Ⅰ)…Cu(Ⅰ) distance.CCDC:2357696,1·2CH_(2)Cl_(2);2357697,2;2018292,3;2092192,4;2092190,5;2155557,6;2406155,7;2406156,8·EtOH.
基金financially supported by the National Key R&D Program of China(No.2023YFA1606702)the National Natural Science Foundation of China(Nos.U2067205 and 12205098).
文摘The Glauber/eikonal model is a widely used tool for studying intermediate-and high-energy nuclear reactions.When calculating the Glauber/eikonal model phase shift functions,the optical limit approximation(OLA)is often used.The OLA neglects the multiple scattering of the constituent nucleons in the projectile and target nuclei.However,the nucleon-target version of the Glauber model(the NTG model)proposed by Abu-Ibrahim and Suzuki includes multiple scattering effects between the projectile nucleons and target nuclei.The NTG model was found to improve the description of the elastic scattering angular distributions and total reaction cross sections of some light heavy-ion systems with respect to the OLA.In this work,we study the single-nucleon removal reactions(SNRRs)induced by carbon isotopes on ^(12)C and ^(9)Be targets using both the NTG model and the OLA.Reduction factors(RFs)of the single-nucleon spectroscopic factors were obtained by comparing the experimental and theoretical SNRR cross sections.On average,the RFs obtained with the NTG model were smaller than those obtained using the OLA by 7.8%,in which the average difference in one-neutron removal was 10.6% and that in one-proton removal was 4.2%.However,the RFs were still strongly dependent on the neutron-proton asymmetryΔS of the projectile nuclei,even when the NTG model was used.
文摘An improved method is proposed for the extraction of the symmetry energy coefficient relative to the temperature,a_(sym)/T,in the heavy-ion reactions near the Fermi energy region,based on the modified Fisher Model.This method is applied to the primary fragments of antisymmetrized molecular dynamics(AMD)simulations for ^(46)Fe+^(46)Fe,^(40)Ca+^(40)Ca and ^(48)Ca+^(48)Ca at 35 MeV/nucleon,in order to make direct comparison to the results from the K(N,Z)method of Ono et al.In our improved method,the extracted values of a_(sym)/T increase as the size of isotopes increases whereas,in the K(N,Z)method,the results show rather constant behavior.This increase in our result is attributed to the surface contribution of the symmetry energy in finite nuclei.In order to evaluate the surface contribution,the relation a_(sym)/T=[a_(sym)^((V))(1-k_(S/V) A^(-1/3))]/T is applied and k_(S/V)=1.20~1.25 was extracted.This value is smaller than those extracted from the mass table,reflecting the weakened surface contribution at higher temperature regime.Δμ/T,the difference of the neutron-proton chemical potentials relative to the temperature,is also extracted in this method at the same time.The average values of the extractedΔμ/T,Δμ/T show a linear dependence on the proton-neutron a_(sym)metry parameter of the system,δ_(sys),andΔμ/T=(15.1±0.2)δ_(sys)-(0.5±0.1)is obtained.
基金funded by the European Union via the Euratom Research and Training Program(Grant Agreement No.101052200-EUROfusion)funding from LASERLAB-EUROPE(Grant Agreement No.871124,European Union’s Horizon 2020 Research and Innovation Program)+5 种基金supported in part by the United States Department of Energy under Grant No.DE-FG02-93ER40773We also acknowledge support from Grant No.PID2021-125389OA-I00 funded by MCIN/AEI/10.13039/501100011033/FEDER,UEby“ERDF A Way of Making Europe”by the European Union and Unidad de Investigación Consolidada of Junta de Castilla y León UIC 167supported in part by the National Natural Science Foundation of China under Grant No.12375125the Fundamental Research Funds for the Central Universitiesthe support of the Czech Science Foundation through Grant No.GACR24-11398S.
文摘Driving of the nuclear fusion reaction p+^(11)B3α+8.7 MeV under laboratory conditions by interaction between high-power laser pulses and matter has become a popular field of research,owing to its numerous potential applications:as an alternative to deuterium-tritium for fusion energy production,astrophysics studies,and alpha-particle generation for medical treatment.One possible scheme for laser-driven p-^(11)B reactions is to direct a beam of laser-accelerated protons onto a boron(B)sample(the so-called“pitcher-catcher”scheme).This technique has been successfully implemented on large high-energy lasers,yielding hundreds of joules per shot at low repetition.We present here a complementary approach,exploiting the high repetition rate of the VEGA III petawatt laser at CLPU(Spain),aiming at accumulating results from many interactions at much lower energy,to provide better control of the parameters and the statistics of the measurements.Despite a moderate energy per pulse,our experiment allowed exploration of the laser-driven fusion process with tens(up to hundreds)of laser shots.The experiment provided a clear signature of the reactions involved and of the fusion products,accumulated over many shots,leading to an improved optimization of the diagnostics for experimental campaigns of this type.In this paper,we discuss the effectiveness of laser-driven p-11B fusion in the pitcher-catcher scheme,at a high repetition rate,addressing the challenges of this experimental scheme and highlighting its critical aspects.Our proposed methodology allows evaluation of the performance of this scheme for laser-driven alpha particle production and can be adapted to high-repetition-rate laser facilities with higher energy and intensity.
文摘Laser therapy is a widely accepted method for tattoo removal,fragmenting tattoo pigments for eventual clearance by the immune system.However,tattoos presenting with signs of allergic reactions—such as erythema,swelling,pruritus,or localized dermatitis—pose unique challenges that contraindicate the use of laser treatments.This review explores clinical and immunological reasons why laser therapy should be avoided in tattoos manifesting allergic reactions,focusing on the exacerbation of symptoms,potential systemic hypersensitivity,and increased risk of severe adverse effects.Tattoo inks,particularly those containing red pigments,are known to induce delayed hypersensitivity reactions,driven by the body’s immune response to the injected foreign substances.Laser-induced breakdown of tattoo pigments can trigger an amplified allergic response due to the rapid release of pigment particles,which may further stimulate the immune system.Additionally,photomechanical fragmentation of tattoo inks during laser treatment increases the bioavailability of allergenic compounds,heightening the risk of severe inflammatory reactions and systemic dissemination of these allergens.Histological evidence suggests allergic reactions to tattoo inks are often granulomatous in nature,and the inflammatory environment created by laser therapy can exacerbate this granulomatous process,resulting in hypertrophic scarring or keloid formation.Moreover,patients with underlying allergic sensitivities to tattoo pigments are at an elevated risk of systemic complications,including generalized urticaria or angioedema,upon laser treatment.Current evidences suggests tattoos of allergic reactions should be not undergone laser therapy,emphasizing the need for alternative management strategies,such as topical application of corticosteroids or excision in severe cases.Clinicians must conduct a thorough pre-treatment assessment,including the patch testing,to identify potential allergenic inks and avoid laser-based interventions on reactive tattoos to prevent complications and safeguard patient's safety.
基金support from the National Natural Science Foundation of China(No.52304048)supported by the Sichuan Science and Technology Program(No.2025ZNSFSC1355)the Open Fund(No.PLN202428)of the State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation at Southwest Petroleum University.
文摘Geochemical reactions play a vital role in determining the efficiency of carbon capture,utilization,and storage combined with enhanced oil recovery(CCUS-EOR),particularly through their influence on reservoir properties.To deepen the understanding of these mechanisms,this review investigates the interactions among injected CO_(2),formation fluids,and rock minerals and evaluates their implications for CCUS-EOR performance.The main results are summarized as follows.First,temperature,pressure,pH,and fluid composition are identified as key factors influencing mineral dissolution and precipitation,which in turn affect porosity,permeability,and CO_(2) storage.Second,carbonate minerals,such as calcite and dolomite,show high reactivity under lower temperature conditions,enhancing dissolution and permeability,while silicate minerals,including illite,kaolinite,quartz,and K-feldspar,are comparatively inert.Third,the formation of carbonic acid during CO_(2) injection promotes dissolution,whereas secondary precipitation,especially of clay minerals,can reduce pore connectivity and limit flow paths.Fourth,mineral transformation and salt precipitation can further modify reservoir characteristics,influencing both oil recovery and long-term CO_(2) trapping.Fifth,advanced experimental tools,such as Computed Tomography(CT)and Nuclear Magnetic Resonance(NMR)imaging,combined with geochemical modeling and reservoir simulation,are essential to predict petrophysical changes across scales.This review provides a theoretical foundation for integrating geochemical processes into CCUS-EOR design,offering technical support for field application and guiding sustainable CO_(2) management in oil reservoirs.
基金supported by the National Natural Science Foundation of China(Grant Nos.:22173065 and 21575094).
文摘Accurate prediction of drug-induced adverse drug reactions(ADRs)is crucial for drug safety evaluation,as it directly impacts public health and safety.While various models have shown promising results in predicting ADRs,their accuracy still needs improvement.Additionally,many existing models often lack interpretability when linking molecular structures to specific ADRs and frequently rely on manually selected molecular fingerprints,which can introduce bias.To address these challenges,we propose ToxBERT,an efficient transformer encoder model that leverages attention and masking mechanisms for simplified molecular input line entry system(SMILES)representations.Our results demonstrate that ToxBERT achieved area under the receiver operating characteristic curve(AUROC)scores of 0.839,0.759,and 0.664 for predicting drug-induced QT prolongation(DIQT),rhabdomyolysis,and liver injury,respectively,outperforming previous studies.Furthermore,ToxBERT can identify drug substructures that are closely associated with specific ADRs.These findings indicate that ToxBERT is not only a valuable tool for understanding the mechanisms underlying specific drug-induced ADRs but also for mitigating potential ADRs in the drug discovery pipeline.
文摘Paclitaxel is one of the commonly used drugs in postoperative chemotherapy for ovarian cancer patients. However, affected by drug dosage and individual differences in the course of medication, patients will have different degrees of adverse reactions, which will cause damage to the patient’s body once they occur. This paper retrospectively analyzed the clinical data of patients with severe allergic reactions such as fecal incontinence and numbness of hands and feet caused by the use of paclitaxel liposome during postoperative chemotherapy in a case of ovarian cancer admitted to our hospital. The causes and corresponding treatment measures were analyzed, in order to provide the reference for medical staff to take effective countermeasures in advance in the future.
基金Baotou City Health Science and Technology Plan(Project No.:2023wsjkkj109)。
文摘Objective:To monitor the incidence of immune-related adverse events(irAEs)in patients treated with immune checkpoint inhibitors(ICIs)and programmed cell death protein-1(PD-1),and to evaluate the effectiveness of nursing interventions using a quantitative scoring system.Methods:A retrospective analysis was performed on 65 cancer patients who received PD-1 therapy at the Oncology Department of Baotou Cancer Hospital from December 2023 to December 2024.The study examined the clinical features and blood test results related to irAEs.The National Cancer Institute’s Common Terminology Criteria for Adverse Events(NCI-CTCAE)was used to grade the severity of these events,which were classified into five levels.Based on the NCI-CTCAE scores,appropriate nursing measures were implemented,and a comprehensive risk assessment framework was developed.Results:The study group showed lower complication rates,overall incidence,and average hospital stay compared to the control group(P<0.05).Among the 65 patients,twenty-eight(43.07%)experienced a total of 35 irAEs,with 2(5.71%)being grade 3 or 4.The most frequent irAEs were dermatological conditions(34.29%),particularly rash with itching.The occurrence of irAEs did not correlate with patient gender,age,blood parameters(hemoglobin,white blood cell count,platelet count,etc.),or liver function(P>0.05),but it was associated with tumor type(P<0.05).Conclusion:PD-1 treatment is generally safe,with a low incidence of severe(grade 3 or higher)irAEs.Close monitoring is essential to ensure early detection,intervention,and management of irAEs,thereby maintaining a low level of adverse events and enhancing the safety and efficacy of PD-1 therapy.Implementing a quantitative risk scoring system for nursing care can decrease the rate of complications,enhance patient safety,and potentially reduce hospital stays and medical costs.
基金supported by the National Natural Science Foundation of China(Nos.12265006,12375129,U1867212)the Innovation Project of Guangxi Graduate Education(No.YCSWYCSW2022176)the Guangxi Natural Science Foundation(2017GXNSFGA198001).
文摘Based on the Skyrme energy density functional and reaction Q-value,this study proposed an effective nucleus-nucleus poten-tial for describing the capture barrier in heavy-ion fusion processes.The 443 extracted barrier heights were well reproduced with a root-mean-square(RMS)error of 1.53 MeV,and the RMS deviations with respect to 144 time-dependent Hartree-Fock capture barrier heights were only 1.05 MeV.Coupled with the Siwek-Wilczyński formula,wherein three parameters were determined by the proposed effective potentials,the measured capture cross sections at energies around the barriers were reasonably well reproduced for several fusion reactions induced by nearly spherical nuclei as well as by nuclei with large deformations,such as^(154)Sm and^(238)U.The shallow capture pockets and small values of the average barrier radii resulted in the reduction of the capture cross sections for 52,54Cr-and 64 Ni-induced reactions,which were related to the synthesis of new super-heavy nuclei.
文摘This paper, an addendum to “Dialectical Thermodynamics’ solution to the conceptual imbroglio that is the reversible path”, this journal, 10, 775-799, was written in response to the requests of several readers to provide further evidence of the said “imbroglio”. The evidence here presented relates to the incompatibility existing between the total-entropy and the Gibbs energy prescriptions for the reversible path. The previously published proof of the negentropic nature of the transformation of heat into work is here included to validate out conclusions about the Gibbs energy perspective.
文摘Objective:To explore the adverse reactions associated with antibiotics and analyze strategies for their rational use.Methods:A retrospective analysis was conducted on 60 patients who experienced adverse reactions to antibiotics between August 2021 and August 2023.The types of antibiotics that caused adverse reactions were analyzed,and the symptoms of adverse reactions and measures for rational use of antibiotics were summarized.Results:Among the analyzed cases of adverse reactions to antibiotics,the highest rate was observed in patients aged 61–75 years,accounting for 38.33%,followed by patients aged 51–60 years,accounting for 20.00%.In terms of the types of antibiotics that caused adverse reactions,cephalosporins were the most common,accounting for 40.00%,followed by penicillins,accounting for 18.33%.Analysis of the systems involved in adverse reactions showed that skin and appendage disorders were the most common,accounting for 36.67%,followed by the digestive system,accounting for 28.33%.Conclusion:Irrational use of antibiotics can lead to adverse drug reactions.Therefore,it is necessary to analyze strategies for the rational use of antibiotics to reduce adverse drug reactions and ensure the safety of antibiotic use.
基金supports from the National Key R&D Program of China(Grant No.2023YFB4203301)National Natural Science Foundation of China(Grant No.52238008)Postdoctoral Fellowship Program of CPSF(Grant No.GZC20241516).
文摘Microbially induced calcite precipitation(MICP)and Enzyme induced calcite precipitation(EICP)techniques were implemented to reinforce the large-scale calcareous sand in this study.Then a coupled numerical model to predict the biochemical reactions and hydraulic characteristics of MICP and EICP reactions was proposed and verified by physical experiments.Results showed that:This model could describe the variations of bacteria,calcium,calcite,permeability over time reasonably.It is necessary to consider the influence of the calculation domain scale when simulating the convection-diffusionreaction in the multi-process of MICP and EICP reactions.The numerical and experimental values of calcite content are 0.841 g/cm^(3) and 0.861 g/cm^(3) for MICP-reinforced sand,0.263 g/cm^(3) and 0.227 g/cm^(3) for EICP-reinforced sand after 192 h of reaction.The reaction rate k_(rea) is an important parameter to control the calcite content.Accordingly,the permeability coefficient of MICP and EICP reinforced calcareous sand decreases by 32%and 18%.Due to the influence of substance transportation and calcite precipitation,the calcite shows a trend of decreasing firstly and then increasing with the enhancing of the initial permeability coefficient in biochemical reactions.The optimal injecting ratio q11:q12 in this study is 100:300 mL/min.The process for the application of MICP and EICP coupled numerical model is also recommended,which provides reference for engineering projects in ground improvement.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 12035019 and 62234013)the National Key Research and Development Program of China(Grant Nos. 2023YFA1609000 and 2022YFB3604001)。
文摘We investigate the impact of high-energy O ions on the occurrence of single-event burnout(SEB) in silicon carbide(Si C) metal–oxide–semiconductor field-effect transistors(MOSFETs) under various bias conditions. Through a combination of SRIM, GEANT4, and TCAD simulations, we explore the role of secondary ions generated by nuclear reactions between high-energy O ions and Si C materials. These secondary ions, with significantly higher linear energy transfer(LET) values, contribute to electron–hole pair generation, leading to SEB. Our results show that the energy deposition and penetration depth of these secondary ions, especially those with high LET, are sufficient to induce catastrophic SEB in Si C MOSFETs. The study also highlights the critical influence of reverse bias voltage on SEB occurrence and provides insights into the failure mechanisms induced by nuclear reactions with high-energy O ions. This work offers valuable understanding for improving the radiation resistance of Si C-based power devices used in space and high-radiation environments,contributing to the design of more reliable electronics for future space missions.
文摘α-Trifluoromethyl ketones are a class of useful compounds with versatile applications.Their synthetic application via the transformation of the C—F bonds is of particular interest by allowing the synthesis of organic compounds with diverse structures.Herein,the advances in the research areas ofα-trifluoromethyl ketone synthesis and their defluorination reactions are reviewed.Discussion on the mechanisms of the typical reactions has also been provided,in hope of affording some guides to the chemistry ofα-trifluoromethyl ketones in the synthetic methods toward themselves and their derivatives.
文摘We explored new approaches to replace the nitrogen atoms of arsenic, antimony, bismuth, and discovered a new paths to modify Raschig, Schiff, Andrusov, Hofmann, Colbe, Delepine reactions with arsine, stibine and bismuthine in organometallic chemistry. We have proposed a new mechanism for possible reactions.
文摘Chiral carbonyl compounds frequently occur in natural products and pharmaceuticals. Additionally, they serve as important intermediates in organic synthesis. Transition metal-catalyzed asymmetric carbonylative cross-coupling reactions are among the most straightforward and effective methods for synthesizing chiral carbonyl compounds, including esters, amides, and ketones. The advances in asymmetric carbonylative cross-coupling reactions using various O-, N-, C-, and S-containing nucleophiles or electrophiles over the past decade are summarized.
基金financially supported by the National Natural Science Foundation of China(Nos.22104112 and 22374110)the Fundamental Research Funds for the Central Universities。
文摘The investigation of reaction kinetics is the key to understanding the nature of reaction processes.However,monitoring fast photochemical reactions by mass spectrometry remains challenging.Herein,we developed an optical focusing inductive electrospray(OF-iESI)mass spectrometry platform for real-time and in-situ photoreaction monitoring.Coaxial irradiation from back of nanoelectrospray emitter with a taper section was utilized,so the emitter could act as optical lens to help achieving much larger optical power density at emitter tip compared to other sections,which allowed for in-situ reaction monitoring of photoreactions.Through theoretical calculations,the highest optical power density region volume was ca.45 nL.We also integrated a controller for the laser source(450 nm),enabling the modulation of pulse duration(>1 ms).This facilitates the study of photochemical reaction kinetics.The in-situ capability of this device was proved by capturing the short-lived photogenerated intermediates during the dehydrogenation of tetrahydroquinoline.This device was further used to investigate the kinetics of triplet energy transfer based Paternò-Büchi reaction.The reaction order has hitherto remained undetermined while the result of OF-iESI suggested it followed pseudo-second-order reaction kinetics.The short-lived donor-acceptor collision complex intermediate was also successfully identified by tandem mass spectrometry.