In this study,injectable bone graft putty samples were developed using fine and coarse melt-quenched 45S5 bioactive glass(BG)incorporated into a carrier system composed of glycerol and polyethylene glycol(PEG)with dif...In this study,injectable bone graft putty samples were developed using fine and coarse melt-quenched 45S5 bioactive glass(BG)incorporated into a carrier system composed of glycerol and polyethylene glycol(PEG)with different average molecular weights.Selected putty samples were further incorporated with varying amounts of Denosumab(5wt%-10wt%)to investigate its influence on rhe-ological behavior and flow properties using mathematical modeling.All PEG/glycerol/45S5-based putty samples exhibited viscoelastic behavior(storage modulus>loss modulus)and pseudoplastic behavior(n<1),with viscosity values required for optimal flow remaining below 1000 Pa∙s.Both viscosity and thixotropic area increased proportionally with higher BG content and smaller-sized BG particles.All putty samples showed more than 98%injectability through a 12G cannula,suggesting potential clinical suitability.However,injectability decreased with smaller cannulas,dropping to 34.7%-58.3%with a 19G cannula and further decreasing with a 23G cannula at higher BG contents.Incorporation of Denosumab preserved viscoelasticity and injectability but modified the flow behavior,shifting it from pseudo-plastic to more Newtonian with higher Denosumab content,while also reducing viscosity and thixotropic area values.Among all tested samples,putty containing a lower amount of Denosumab and smaller-sized BG exhibited the most suitable combination of injectability and rheological features.All putty samples were well described by both the Power law and Herschel-Bulkley rheological models(coeffi-cient of determination>0.95).This study highlights the influence of Denosumab on flowability and rheological relationships and sug-gests potential improvements in bioactivity through a dual synergistic effect of BG and Denosumab in minimally invasive bone graft sys-tems.展开更多
The development of stretchable conductors with high deformation,conductivity,and thermal conductivity using liquid metal(LM)has sparked widespread interest in the fields of flexible electronics,electromagnetic interfe...The development of stretchable conductors with high deformation,conductivity,and thermal conductivity using liquid metal(LM)has sparked widespread interest in the fields of flexible electronics,electromagnetic interference(EMI),and multifunctional materi-als.However,fabricating desirable shielding materials by directly coating LMs on soft polymer substrates remains a challenge because of the huge surface tension and weak wettability of LMs.In this study,Ga-based composite paste is prepared from a mixture of Ga and dia-mond nonmetallic particles through ultrasonic fragmentation.At various temperatures,the resulting LM composite putty(LMP)exhibits soft and hard properties and can thus be molded into specific shapes according to application needs.In addition,the composite can be eas-ily coated onto polymer substrates,such as thermoplastic polyurethane(TPU)elastomer.The fabricated LMP–TPU exhibits an impress-ive shape deformation capacity of 1100%,demonstrating exceptional tensile properties and achieving electromagnetic interference–shielding effectiveness of up to 52 dB.Furthermore,it retains an ultrahigh conductivity of 20000 S/m,even under a strain of 600%.This feature further makes it a highly competitive multifunctional material.展开更多
基金supported by Yildiz Technical University Scientific Research Projects Coordination Unit under project number FBA-2023-5377support from the Scientific and Technological Research Council of Turkey(TUBITAK)under the BIDEB/2211-A National PhD Scholarship Program and 2250-Performance-Based Scholarships Program for PhD.
文摘In this study,injectable bone graft putty samples were developed using fine and coarse melt-quenched 45S5 bioactive glass(BG)incorporated into a carrier system composed of glycerol and polyethylene glycol(PEG)with different average molecular weights.Selected putty samples were further incorporated with varying amounts of Denosumab(5wt%-10wt%)to investigate its influence on rhe-ological behavior and flow properties using mathematical modeling.All PEG/glycerol/45S5-based putty samples exhibited viscoelastic behavior(storage modulus>loss modulus)and pseudoplastic behavior(n<1),with viscosity values required for optimal flow remaining below 1000 Pa∙s.Both viscosity and thixotropic area increased proportionally with higher BG content and smaller-sized BG particles.All putty samples showed more than 98%injectability through a 12G cannula,suggesting potential clinical suitability.However,injectability decreased with smaller cannulas,dropping to 34.7%-58.3%with a 19G cannula and further decreasing with a 23G cannula at higher BG contents.Incorporation of Denosumab preserved viscoelasticity and injectability but modified the flow behavior,shifting it from pseudo-plastic to more Newtonian with higher Denosumab content,while also reducing viscosity and thixotropic area values.Among all tested samples,putty containing a lower amount of Denosumab and smaller-sized BG exhibited the most suitable combination of injectability and rheological features.All putty samples were well described by both the Power law and Herschel-Bulkley rheological models(coeffi-cient of determination>0.95).This study highlights the influence of Denosumab on flowability and rheological relationships and sug-gests potential improvements in bioactivity through a dual synergistic effect of BG and Denosumab in minimally invasive bone graft sys-tems.
基金supported by the National Natural Science Foundation of China(Nos.52271167 and U21A2064)the Key Program of Natural Science Foundation of Henan Province,China(No.242300421188)+1 种基金ZUA Innovation Fund for Graduate Education,China(No.2024CX134)Henan Key Laboratory of Aeronautical Material and Technology Open Foundation,China(No.ZHKF-240103).
文摘The development of stretchable conductors with high deformation,conductivity,and thermal conductivity using liquid metal(LM)has sparked widespread interest in the fields of flexible electronics,electromagnetic interference(EMI),and multifunctional materi-als.However,fabricating desirable shielding materials by directly coating LMs on soft polymer substrates remains a challenge because of the huge surface tension and weak wettability of LMs.In this study,Ga-based composite paste is prepared from a mixture of Ga and dia-mond nonmetallic particles through ultrasonic fragmentation.At various temperatures,the resulting LM composite putty(LMP)exhibits soft and hard properties and can thus be molded into specific shapes according to application needs.In addition,the composite can be eas-ily coated onto polymer substrates,such as thermoplastic polyurethane(TPU)elastomer.The fabricated LMP–TPU exhibits an impress-ive shape deformation capacity of 1100%,demonstrating exceptional tensile properties and achieving electromagnetic interference–shielding effectiveness of up to 52 dB.Furthermore,it retains an ultrahigh conductivity of 20000 S/m,even under a strain of 600%.This feature further makes it a highly competitive multifunctional material.