期刊文献+
共找到28,574篇文章
< 1 2 250 >
每页显示 20 50 100
Optimizing Magnetic Performance and Microstructure of CoPt Nanoparticles by Sol-Gel Synthesis
1
作者 WANG Xinchi WANG Wei +2 位作者 LIU Shuai WANG Yun LI Baohe 《Journal of Wuhan University of Technology(Materials Science)》 2026年第1期8-14,共7页
We prepared Co_(x)Pt_(100-x)(x=40,45,50,55,60)nanoparticles by the sol-gel method.The phase composition and crystal structure,morphology and microstructure,and magnetic properties of the samples were characterized and... We prepared Co_(x)Pt_(100-x)(x=40,45,50,55,60)nanoparticles by the sol-gel method.The phase composition and crystal structure,morphology and microstructure,and magnetic properties of the samples were characterized and tested using X-ray diffraction(XRD),transmission electron microscopy(TEM),and vibrating sample magnetometer(VSM),respectively.The results demonstrate that the coercivity of CoPt nanoparticles can be effectively controlled by adjusting the atomic ratio of Co and Pt in the samples.Among the compositions studied,the Co_(45)Pt_(55)sample synthesized by the sol-gel method exhibits smaller grain size and a coercivity as high as 6.65×10^(5) A/m is achieved.The morphology and microstructure of the nanoparticles were analyzed by TEM images,indicating that a slight excess of Pt can effectively enhance the coercivity of CoPt nanoparticles. 展开更多
关键词 COPT sol-gel method atomic ratio magnetic nanoparticles COERCIVITY
原文传递
Improving Efficiency of Light Pressure Electric Generator Using Graphene Oxide Nanospacer Between Ag Nanoparticles
2
作者 Ha Young Lee Sung-Hyun Kim +3 位作者 Sun-Lyeong Hwang Hyung Soo Ahn Heedae Kim Sam Nyung Yi 《Carbon Energy》 2026年第1期38-47,共10页
Improving device efficiency is fundamental for advancing energy harvesting technology,particularly in systems designed to convert light energy into electrical output.In our previous studies,we developed a basic struct... Improving device efficiency is fundamental for advancing energy harvesting technology,particularly in systems designed to convert light energy into electrical output.In our previous studies,we developed a basic structure light pressure electric generator(Basic-LPEG),which utilized a layered configuration of Ag/Pb(Zr,Ti)O_(3)(PZT)/Pt/GaAs to generate electricity based on light-induced pressure on the PZT.In this study,we sought to enhance the performance of this Basic-LPEG by introducing Ag nanoparticles/graphene oxide(AgNPs/GO)composite units(NP-LPEG),creating upgraded harvesting device.Specifically,by depositing the AgNPs/GO units twice onto the Basic-LPEG,we observed an increase in output voltage and current from 241 mV and 3.1μA to 310 mV and 9.3μA,respectively,under a solar simulator.The increase in electrical output directly correlated with the intensity of the light pressure impacting the PZT,as well as matched the Raman measurements,finite-difference time-domain simulations,and COMSOL Multiphysics Simulation.Experimental data revealed that the enhancement in electrical output was proportional to the number of hot spots generated between Ag nanoparticles,where the electric field experienced substantial amplification.These results underline the effectiveness of AgNPs/GO units in boosting the light-induced electric generation capacity,thereby providing a promising pathway for high-efficiency energy harvesting devices. 展开更多
关键词 Ag nanoparticles energy harvesting graphene oxide light pressure PIEZOELECTRIC
在线阅读 下载PDF
A Promising Strategy for Solvent-Regulated Selective Hydrogenation of 5-Hydroxymethylfurfural over Porous Carbon-Supported Ni-ZnO Nanoparticles
3
作者 Rulu Huang Chao Liu +4 位作者 Kaili Zhang Jianchun Jiang Ziqi Tian Yongming Chai Kui Wang 《Nano-Micro Letters》 2026年第1期130-143,共14页
Developing biomass platform compounds into high value-added chemicals is a key step in renewable resource utilization.Herein,we report porous carbon-supported Ni-ZnO nanoparticles catalyst(Ni-ZnO/AC)synthesized via lo... Developing biomass platform compounds into high value-added chemicals is a key step in renewable resource utilization.Herein,we report porous carbon-supported Ni-ZnO nanoparticles catalyst(Ni-ZnO/AC)synthesized via low-temperature coprecipitation,exhibiting excellent performance for the selective hydrogenation of 5-hydroxymethylfurfural(HMF).A linear correlation is first observed between solvent polarity(E_(T)(30))and product selectivity within both polar aprotic and protic solvent classes,suggesting that solvent properties play a vital role in directing reaction pathways.Among these,1,4-dioxane(aprotic)favors the formation of 2,5-bis(hydroxymethyl)furan(BHMF)with 97.5%selectivity,while isopropanol(iPrOH,protic)promotes 2,5-dimethylfuran production with up to 99.5%selectivity.Mechanistic investigations further reveal that beyond polarity,proton-donating ability is critical in facilitating hydrodeoxygenation.iPrOH enables a hydrogen shuttle mechanism where protons assist in hydroxyl group removal,lowering the activation barrier.In contrast,1,4-dioxane,lacking hydrogen bond donors,stabilizes BHMF and hinders further conversion.Density functional theory calculations confirm a lower activation energy in iPrOH(0.60 eV)compared to 1,4-dioxane(1.07 eV).This work offers mechanistic insights and a practical strategy for solvent-mediated control of product selectivity in biomass hydrogenation,highlighting the decisive role of solvent-catalyst-substrate interactions. 展开更多
关键词 Porous carbon-supported Ni-ZnO nanoparticles catalyst Selective hydrogenation 5-HYDROXYMETHYLFURFURAL SOLVENT Proton-donating ability
在线阅读 下载PDF
Reduction of iron oxide nanoparticles by Geobacter sulfurreducens PCA involves outer membrane proteins and secreted redox-active substances
4
作者 Yifan Cui Xiaoyan Zhang +7 位作者 Peijie Yang Yanwei Liu Maoyong Song Yingying Guo Wentao Jiao Yongguang Yin Yong Cai Guibin Jiang 《Journal of Environmental Sciences》 2026年第1期767-774,共8页
Fe reducing bacteria(FRB),through extracellular electron transfer(EET)pathway,can reduce Fe(III)nanoparticles,thereby affecting the migration,transformation,and degradation of pollutants.However,the interaction of Fe(... Fe reducing bacteria(FRB),through extracellular electron transfer(EET)pathway,can reduce Fe(III)nanoparticles,thereby affecting the migration,transformation,and degradation of pollutants.However,the interaction of Fe(III)nanoparticles with the most commonly identified FRB,Geobacter sulfurreducens PCA,remains poorly understood.Herein,we demonstrated that the synergistic role of outer membrane proteins and periplasmic proteins in the EET process for-Fe_(2)O_(3),Fe3O4,and𝛽α-FeOOH nanoparticles by construction of multiple gene knockout strain.oxpG(involved in the type II secretion system)and omcST(outer membrane c-type cytochrome)medi-ated pathways accounted for approximately 67%of the total reduction of𝛼α-Fe_(2)O_(3) nanoparticles.The residual reduction of𝛼α-Fe_(2)O_(3) nanoparticles in∆oxpG-omcST strain was likely caused by redox-active substances in cell supernatant.Conversely,the reduction of dissolved Fe(III)was almost unaffected in∆oxpG-omcST strain at the same concentration.However,at high dissolved Fe(III)concentration,the reduction significantly decreased due to the formation of Fe(III)nanoparticles,suggesting that this EET process is specific to Fe(III)nanoparticles.Overall,our study provided a more comprehensive understanding for the EET pathways between G.sulfurreducens PCA and different Fe(III)species,enriching our knowledge on the role of microorganisms in iron biogeochemical cycles and remediation strategies of pollutants. 展开更多
关键词 Microbial Fe(III)reduction Fe(III)nanoparticles Extracellular electron transfer Redox-active substances Geobacter sulfurreducens PCA
原文传递
Preparation of silver nanoparticles through the reduction of straw-extracted lignin and its antibacterial hydrogel 被引量:1
5
作者 Lou Zhang Shuo Li +4 位作者 Fu Tang Jingkai Zhang Yuetong Kang Hean Zhang Lidong Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第2期504-514,共11页
Silver nanoparticles(Ag NPs)have attracted attention in the field of biomaterials due to their excellent antibacterial property.However,the reducing and stabilizing agents used for the chemical reduction of Ag NPs are... Silver nanoparticles(Ag NPs)have attracted attention in the field of biomaterials due to their excellent antibacterial property.However,the reducing and stabilizing agents used for the chemical reduction of Ag NPs are usually toxic and may cause water pollution.In this work,Ag NPs(31.2 nm in diameter)were prepared using the extract of straw,an agricultural waste,as the reducing and stabilizing agent.Experimental analysis revealed that the straw extract contained lignin,the structure of which possesses phenolic hydroxyl and methoxy groups that facilitate the reduction of silver salts into Ag NPs.The surfaces of Ag NPs were negatively charged due to the encapsulation of a thin layer of lignin molecules that prevented their aggregation.After the prepared Ag NPs were added to the precursor solution of acrylamide,free radical polymerization was triggered without the need for extra heating or light irradiation,resulting in the rapid formation of an Ag NP-polyacrylamide composite hydrogel.The inhibition zone test proved that the composite hydrogel possessed excellent antibacterial ability due to the presence of Ag NPs.The prepared hydrogel may have potential applications in the fabrication of biomedical materials,such as antibacterial dressings. 展开更多
关键词 silver nanoparticles HYDROGEL STRAW extraction ANTIBACTERIAL
在线阅读 下载PDF
Direct Photolithography of WO_(x) Nanoparticles for High‑Resolution Non‑Emissive Displays 被引量:2
6
作者 Chang Gu Guojian Yang +7 位作者 Wenxuan Wang Aiyan Shi Wenjuan Fang Lei Qian Xiaofei Hu Ting Zhang Chaoyu Xiang Yu‑Mo Zhang 《Nano-Micro Letters》 SCIE EI CAS 2025年第3期297-309,共13页
High-resolution non-emissive displays based on electrochromic tungsten oxides(WOx)are crucial for future near-eye virtual/augmented reality interactions,given their impressive attributes such as high environmental sta... High-resolution non-emissive displays based on electrochromic tungsten oxides(WOx)are crucial for future near-eye virtual/augmented reality interactions,given their impressive attributes such as high environmental stability,ideal outdoor readability,and low energy consumption.However,the limited intrinsic structure of inorganic materials has presented a significant challenge in achieving precise patterning/pixelation at the micron scale.Here,we successfully developed the direct photolithography for WOx nanoparticles based on in situ photo-induced ligand exchange.This strategy enabled us to achieve ultra-high resolution efficiently(line width<4μm,the best resolution for reported inorganic electrochromic materials).Additionally,the resulting device exhibited impressive electrochromic performance,such as fast response(<1 s at 0 V),high coloration efficiency(119.5 cm^(2) C^(−1)),good optical modulation(55.9%),and durability(>3600 cycles),as well as promising applications in electronic logos,pixelated displays,flexible electronics,etc.The success and advancements presented here are expected to inspire and accelerate research and development(R&D)in high-resolution non-emissive displays and other ultra-fine micro-electronics. 展开更多
关键词 Electrochromic Direct photolithography WOx nanoparticles In situ photo-induced ligand exchange High-resolution displays
在线阅读 下载PDF
Protein nanoparticles as potent delivery vehicles for polycytosine RNA-binding protein one 被引量:1
7
作者 Zi-Yu Zhao Pei-Li Luo +1 位作者 Xia Guo Zheng-Wei Huang 《World Journal of Diabetes》 SCIE 2025年第1期222-225,共4页
Ma et al recently reported in the World Journal of Diabetes that ferroptosis occurs in osteoblasts under high glucose conditions,reflecting diabetes pathology.This condition could be protected by the upregulation of t... Ma et al recently reported in the World Journal of Diabetes that ferroptosis occurs in osteoblasts under high glucose conditions,reflecting diabetes pathology.This condition could be protected by the upregulation of the gene encoding polycytosine RNA-binding protein 1(PCBP1).Additionally,Ma et al used a lentivirus infection system to express PCBP1.As the authors’method of administration can be improved in terms of stability and cost,we propose delivering PCBP1 to treat type 2 diabetic osteoporosis by encapsulating it in protein nanoparticles.First,PCBP1 is small and druggable.Second,intravenous injection can help deliver PCBP1 across the mucosa while avoiding acid and enzyme-catalyzed degradation.Furthermore,incorporating PCBP1 into nanoparticles prevents its interaction with water or oxygen and protects PCBP1’s structure and activity.Notably,the safety of the protein materials and the industrialization techniques for large-scale production of protein nanoparticles must be comprehensively investigated before clinical application. 展开更多
关键词 Polycytosine RNA-binding protein 1 Protein nanoparticle OSTEOBLAST Ferroptosis DIABETES
暂未订购
Nanoparticles for the treatment of spinal cord injury 被引量:2
8
作者 Qiwei Yang Di Lu +8 位作者 Jiuping Wu Fuming Liang Huayi Wang Junjie Yang Ganggang Zhang Chen Wang Yanlian Yang Ling Zhu Xinzhi Sun 《Neural Regeneration Research》 SCIE CAS 2025年第6期1665-1680,共16页
Spinal cord injuries lead to significant loss of motor, sensory, and autonomic functions, presenting major challenges in neural regeneration. Achieving effective therapeutic concentrations at injury sites has been a s... Spinal cord injuries lead to significant loss of motor, sensory, and autonomic functions, presenting major challenges in neural regeneration. Achieving effective therapeutic concentrations at injury sites has been a slow process, partly due to the difficulty of delivering drugs effectively. Nanoparticles, with their targeted delivery capabilities, biocompatibility, and enhanced bioavailability over conventional drugs, are garnering attention for spinal cord injury treatment. This review explores the current mechanisms and shortcomings of existing treatments, highlighting the benefits and progress of nanoparticle-based approaches. We detail nanoparticle delivery methods for spinal cord injury, including local and intravenous injections, oral delivery, and biomaterial-assisted implantation, alongside strategies such as drug loading and surface modification. The discussion extends to how nanoparticles aid in reducing oxidative stress, dampening inflammation, fostering neural regeneration, and promoting angiogenesis. We summarize the use of various types of nanoparticles for treating spinal cord injuries, including metallic, polymeric, protein-based, inorganic non-metallic, and lipid nanoparticles. We also discuss the challenges faced, such as biosafety, effectiveness in humans, precise dosage control, standardization of production and characterization, immune responses, and targeted delivery in vivo. Additionally, we explore future directions, such as improving biosafety, standardizing manufacturing and characterization processes, and advancing human trials. Nanoparticles have shown considerable progress in targeted delivery and enhancing treatment efficacy for spinal cord injuries, presenting significant potential for clinical use and drug development. 展开更多
关键词 ANTIOXIDANTS axon regeneration biocompatible materials drug carriers nanoparticles nerve regeneration neuroinflammatory diseases NEUROPROTECTION spinal cord injury stem cells
在线阅读 下载PDF
冠突曲霉AcMpdA基因的功能
9
作者 袁娅娅 王杰 +5 位作者 胡棋兰 唐彩艳 张锐 费正林 杨昌发 葛永怡 《菌物学报》 北大核心 2025年第11期89-107,共19页
冠突曲霉Aspergillus cristatus是茯砖茶发酵过程中的优势菌,渗透压可调节该菌进行纯的有性繁殖和无性繁殖。MpdA对真菌的孢子形成及甘露醇生物合成皆起到关键的调控作用,且甘露醇还与渗透压的响应相关。为揭示AcMpdA基因在冠突曲霉生... 冠突曲霉Aspergillus cristatus是茯砖茶发酵过程中的优势菌,渗透压可调节该菌进行纯的有性繁殖和无性繁殖。MpdA对真菌的孢子形成及甘露醇生物合成皆起到关键的调控作用,且甘露醇还与渗透压的响应相关。为揭示AcMpdA基因在冠突曲霉生长发育及应激响应中的角色,探索该菌生长发育与代谢物之间的联系,本研究构建了AcMpdA缺失菌株(△AcMpdA)。通过比较突变株与野生型菌株的形态差异和代谢物变化,得出如下的结果:突变株的菌丝分枝增加,子囊孢子发育不全,分生孢子数减少;突变株对刚果红、渗透应激和热应激表现更敏感;甘露醇检测结果显示,突变株的甘露醇含量比野生型菌株少61%;代谢组结果分析显示,突变株与野生型菌株相比有1555种代谢物存在显著差异,差异代谢物包括脂质和类脂分子、有机杂环化合物、有机酸及其衍生物等,其中脂质和类脂物质占比较高;KEGG通路富集分析显示,差异代谢物主要富集在新陈代谢、遗传信息处理、环境信息处理和细胞过程通路,AcMpdA缺失显著影响了不饱和脂肪酸的生物合成和花生四烯酸代谢。综上所述,冠突曲霉的AcMpdA影响了菌丝分枝、有性和无性孢子形成,降低了抗环境胁迫的能力,并调控了脂质和类脂分子的代谢过程,其中在曲霉属中该基因对脂类物质及其途径的调控作用还未见报道。 展开更多
关键词 冠突曲霉 mpda基因 有性和无性发育 应激反应 代谢组学
原文传递
Engendered nanoparticles for treatment of brain tumors
10
作者 SOROUSH SOLEYMANI MOHAMMAD DOROUDIAN +5 位作者 MAHDIEH SOEZI ALI BELADI KIARASH ASGARI ASO MOBARAKSHAHI ARYANA AGHAEIPOUR RONAN MACLOUGHLIN 《Oncology Research》 SCIE 2025年第1期15-26,共12页
Brain metastasis and primary glioblastoma multiforme represent the most common and lethal malignant brain tumors.Its median survival time is typically less than a year after diagnosis.One of the major challenges in tr... Brain metastasis and primary glioblastoma multiforme represent the most common and lethal malignant brain tumors.Its median survival time is typically less than a year after diagnosis.One of the major challenges in treating these cancers is the efficiency of the transport of drugs to the central nervous system.The blood-brain barrier is cooperating with advanced stages of malignancy.The blood-brain barrier poses a significant challenge to delivering systemic medications to brain tumors.Nanodrug delivery systems have emerged as promising tools for effectively crossing this barrier.Additionally,the development of smart nanoparticles brings new hope for cancer diagnosis and treatment.These nanoparticles improve drug delivery efficiency,allowing for the creation of targeted and stimuli-responsive delivery methods.This review highlights recent advancements in nanoparticle and smart nanoparticle technologies for brain cancer treatment,exploring the range of nanoparticles under development,their applications,targeting strategies,and the latest progress in enhancing transport across the blood-brain barrier.It also addresses the ongoing challenges and potential benefits of these innovative approaches. 展开更多
关键词 nanoparticles Smart nanoparticles Stimuli responsive nanoparticles Targeted nanoparticles Blood-brain barrier(BBB) Brain cancer
暂未订购
Catalytic detoxification of mitoxantrone by graphitic carbon nitride(g-C_(3)N_(4))supported Fe/Pd bimetallic nanoparticles 被引量:1
11
作者 Qianyu Xu Haoyang Fu +2 位作者 Jiyuan Gu Liyu Lei Lan Ling 《Journal of Environmental Sciences》 2025年第2期614-624,共11页
The overuse of antibiotics and antitumor drugs has resulted in more and more extensive pollution of water bodies with organic drugs,causing detrimental ecological effects,which have attracted attention towards effecti... The overuse of antibiotics and antitumor drugs has resulted in more and more extensive pollution of water bodies with organic drugs,causing detrimental ecological effects,which have attracted attention towards effective and sustainable methods for antibiotics and antitumor drug degradation.Here,the hybrid nanomaterial(g-C_(3)N_(4)@Fe/Pd)was synthesized and used to remove a kind of both an antibiotic and antitumor drug named mitoxantrone(MTX)with 92.0%removal efficiency,and the MTX removal capacity is 450 mg/g.After exposing to the hybrid material the MTX aqueous solution changed color from dark blue to lighter progressively,and LC-UV results of residual solutions showthat a newpeak at 3.0min(MTX:13.2min)after removal by g-C_(3)N_(4)@Fe/Pd appears,with the simultaneous detection of intermediate products indicating that g-C_(3)N_(4)@Fe/Pd indeed degrades MTX.Detailed mass spectrometric analysis suggests that the nuclear mass ratio decreased from 445.2(M+1H)to 126.0(M+1H),169.1(M+1H),239.2(M+1H),267.3(M+1H),285.2(M+1H),371.4(M+1H)and 415.2(M+1H),and the maximum proportion(5.63%)substance of all degradation products(126.0(M+1H))is 40-100 times less toxic than MTX.A mechanism for the removal and degradation of mitoxantrone was proposed.Besides,actual water experiments confirmed that the maximum removal capacity of MTX by g-C_(3)N_(4)@Fe/Pd is up to 492.4 mg/g(0.02 g/L,10 ppm). 展开更多
关键词 DEGRADATION LC-QTOF-MS nanoparticles MITOXANTRONE Aqueous solution
原文传递
Biomimetic nanoparticles co-deliver hirudin and lumbrukinase to ameliorate thrombus and inflammation for atherosclerosis therapy 被引量:1
12
作者 Mengying Cheng Tianxiang Yue +3 位作者 Hong Wang Lai Jiang Qiaoling Huang Fanzhu Li 《Asian Journal of Pharmaceutical Sciences》 2025年第1期183-198,共16页
Atherosclerosis(AS)is a progressive inflammatory disease,and thrombosis most likely leads to cardiovascular morbidity and mortality globally.Thrombolytic drugs alone cannot completely prevent thrombotic events,and tre... Atherosclerosis(AS)is a progressive inflammatory disease,and thrombosis most likely leads to cardiovascular morbidity and mortality globally.Thrombolytic drugs alone cannot completely prevent thrombotic events,and treatments targeting thrombosis also need to regulate the inflammatory process.Based on the dynamic pathological development of AS,biomimetic thrombus-targeted nanoparticles HMTL@PM were prepared.Hirudin and lumbrukinase,effective substances of traditional Chinese medicine,were self-assembled under the action of tannic acid and Mn^(2+).HMTL@PM dissociated in the weakly acidic microenvironment of atherosclerosis and exhibited excellent therapeutic effects,including alleviating inflammation,dissolving thrombus,anticoagulation,and promoting cholesterol efflux.HMTL@PM effectively regulated the progression of AS and provided a newperspective for the development of drug delivery systems for AS therapy,which holds important research significance for reducing the mortality of cardiovascular and cerebrovascular diseases. 展开更多
关键词 ATHEROSCLEROSIS HIRUDIN Lumbrukinase Biomimetic nanoparticle THROMBOLYSIS Anti-inflammatory
暂未订购
Enhancing Plant Resilience to Biotic and Abiotic Stresses through Exogenously Applied Nanoparticles:A Comprehensive Review of Effects and Mechanism 被引量:1
13
作者 Jalil Ahmad Muhammad Munir +6 位作者 Nashi Alqahtani Tahira Alyas Muhammad Ahmad Sadia Bashir Fasiha Qurashi Abdul Ghafoor Hassan Ali–Dinar 《Phyton-International Journal of Experimental Botany》 2025年第2期281-302,共22页
A steady rise in the overall population is creating an overburden on crops due to their global demand.On the other hand,given the current climate change and population growth,agricultural practices established during ... A steady rise in the overall population is creating an overburden on crops due to their global demand.On the other hand,given the current climate change and population growth,agricultural practices established during the Green Revolution are no longer viable.Consequently,innovative practices are the prerequisite of the time struggle with the rising global food demand.The potential of nanotechnology to reduce the phytotoxic effects of these ecological restrictions has shown significant promise.Nanoparticles(NPs)typically enhance plant resilience to stressors by fortifying the physical barrier,optimizing photosynthesis,stimulating enzymatic activity for defense,elevating the concentration of stress-resistant compounds,and activating the expression of genes associated with defense mechanisms.In this review,we thoroughly cover the uptake and translocations of NPs crops and their potential valuable functions in enhancing plant growth and development at different growth stages.Additionally,we addressed how NPs improve plant resistance to biotic and abiotic stress.Generally,this review presents a thorough understanding of the significance of NPs in plants and their prospective value for plant antioxidant and crop development. 展开更多
关键词 CROP abiotic stress ANTIOXIDANT biotic stress nanoparticles
在线阅读 下载PDF
Metal nanoparticles decorated CoFe-(oxy)hydroxysulfides nanosheets fabricated by a general strategy for electrocatalytic water splitting 被引量:1
14
作者 Xiaodong Yang Haochen Shen +7 位作者 Xiaoming Xiao Zhichao Li Qi Zhou Wei Yang Bin Jiang Yongli Sun Luhong Zhang Zhenhua Yan 《Journal of Energy Chemistry》 2025年第1期26-38,共13页
This study presents a novel method to fabricate metal-decorated,sulfur-doped layered double hydroxides(M/SLDH)through spontaneous redox and sulfurization processes.The developed Ag/SLDH and Pt/SLDH catalysts with abun... This study presents a novel method to fabricate metal-decorated,sulfur-doped layered double hydroxides(M/SLDH)through spontaneous redox and sulfurization processes.The developed Ag/SLDH and Pt/SLDH catalysts with abundant heterogeneous interfaces and hierarchical nanostructures demonstrated outstanding oxygen evolution reaction(OER)and hydrogen evolution reaction(HER)performance,achieving low overpotentials of 212 and 35 mV at 10 mA cm^(-2)in 1 M KOH,respectively.As both anode and cathode in water splitting,they required only 1.47 V to reach 10 mA cm^(-2)and exhibited high structural robustness,maintaining stability at 1000 mA cm^(-2)for 300 h.In-situ Raman analysis revealed that the synergistic effects of metal nanoparticles and S doping significantly promote the transformation into the S-Co1-xFexOOH layer,which serves as the active phase for water oxidation.Additionally,ultraviolet photoelectron spectroscopy(UPS)and density functional theory(DFT)analyses indicated that incorporating metal nanoparticles and S doping increase electron density near the Fermi level and reduce reaction energy barriers,thus enhancing intrinsic OER and HER activities.This study provides a scalable strategy for synthesizing high-performance electrocatalysts for water splitting,with promising potential for broader applications. 展开更多
关键词 LDH Spontaneous reaction Metal nanoparticles Water splitting
在线阅读 下载PDF
Deciphering the toxic effects of polystyrene nanoparticles on erythropoiesis at single-cell resolution 被引量:1
15
作者 Eun Jung Kwon Hyeon Mi Sung +10 位作者 Hansong Lee Soyul Ahn Yejin Kim Chae Rin Lee Kihun Kim Kyungjae Myung Won Kyu Kim Dokyoung Kim Sanghwa Jeong Chang-Kyu Oh Yun Hak Kim 《Zoological Research》 2025年第1期165-176,共12页
Polystyrene nanoparticles pose significant toxicological risks to aquatic ecosystems,yet their impact on zebrafish(Danio rerio)embryonic development,particularly erythropoiesis,remains underexplored.This study used si... Polystyrene nanoparticles pose significant toxicological risks to aquatic ecosystems,yet their impact on zebrafish(Danio rerio)embryonic development,particularly erythropoiesis,remains underexplored.This study used single-cell RNA sequencing to comprehensively evaluate the effects of polystyrene nanoparticle exposure on erythropoiesis in zebrafish embryos.In vivo validation experiments corroborated the transcriptomic findings,revealing that polystyrene nanoparticle exposure disrupted erythrocyte differentiation,as evidenced by the decrease in mature erythrocytes and concomitant increase in immature erythrocytes.Additionally,impaired heme synthesis further contributed to the diminished erythrocyte population.These findings underscore the toxic effects of polystyrene nanoparticles on hematopoietic processes,highlighting their potential to compromise organismal health in aquatic environments. 展开更多
关键词 Polystyrene nanoparticles Zebrafish embryos Single-cell RNA sequencing ERYTHROPOIESIS
在线阅读 下载PDF
Effect of rapamycin nanoparticles in an animal model of primary biliary cholangitis 被引量:1
16
作者 Yu-Shu Yang Xian-Rui Li +8 位作者 Zhi-Min Wang Lin Zheng Jin-Long Li Xiao-Lin Cui Yan-Biao Song Jun-Ji Ma Hui-Fang Guo Li-Xia Gao Xiao-Hui Zhou 《World Journal of Hepatology》 2025年第6期190-199,共10页
BACKGROUND Primary biliary cholangitis(PBC)is a chronic autoimmune-mediated cholestatic liver disease.Nanoparticles encapsulating rapamycin(ImmTOR)suppress adaptive immune responses and induce the hepatic tolerogenic ... BACKGROUND Primary biliary cholangitis(PBC)is a chronic autoimmune-mediated cholestatic liver disease.Nanoparticles encapsulating rapamycin(ImmTOR)suppress adaptive immune responses and induce the hepatic tolerogenic immune response.AIM To investigate the effects of ImmTOR in PBC mouse models.METHODS PBC models were induced in C57BL/6 mice by two immunizations of 2-octynoic acid-coupled bovine serum albumin at two-week intervals,and polycytidylic acid every three days.The PBC mouse models were separated into the treatment group and the control group.The levels of alkaline phosphatase(ALP)and alanine aminotransferase in the mice were detected using an automatic biochemical analyzer.Liver and spleen mononuclear cells were analyzed by flow cytometry,and serum anti-mitochondrial antibodies(AMA)and the related cytokines were analyzed by enzyme-linked immunosorbent assay.Liver histopathology was examined by hematoxylin and eosin staining and scored.RESULTS After treatment with ImmTOR,the ALP level was significantly decreased(189.60 U/L±27.25 U/L vs 156.00 U/L±17.21 U/L,P<0.05),the level of AMA was reduced(1.28 ng/mL±0.27 ng/mL vs 0.56 ng/mL±0.07 ng/mL,P<0.001)and the expression levels of interferon gamma and tumor necrosis factorαwere significantly decreased(48.29 pg/mL±10.84 pg/mL vs 25.01 pg/mL±1.49 pg/mL,P<0.0001)and(84.24 pg/mL±23.47 pg/mL vs 40.66 pg/mL±14.65 pg/mL,P<0.001).The CD4+T lymphocytes,CD8+T lymphocytes and B lymphocytes in the liver were significantly reduced,with statistically significant differences(24.21%±6.55%vs 15.98%±3.03%,P<0.05;9.09%±1.91%vs 5.49%±1.00%,P<0.001;80.51%±2.96%vs 75.31%±4.34%,P<0.05).The expression of CD8+T lymphocytes and B lymphocytes in the ImmTOR treatment group also decreased(9.09%±1.91%vs 5.49%±1.00%,P<0.001;80.51%±2.96%vs 75.31%±4.34%,P<0.05).The liver pathology of PBC mice in the treatment group showed reduced inflammation and a decreased total pathology score,and the difference in the scores was statistically significant(4.50±2.88 vs 1.75±1.28,P<0.05).CONCLUSION ImmTOR can improve biochemistry and pathology of liver obvious by inhibiting the expression of CD8+T cells and B cells,and reducing the titer of AMA. 展开更多
关键词 Primary biliary cholangitis RAPAMYCIN nanoparticles Mouse model Anti-mitochondrial antibodies CYTOKINE
暂未订购
Kirkendall effect-assisted electrospinning porous FeCo/Zn@C nanofibers featuring well-dispersed FeCo nanoparticles for ultra-wide electromagnetic wave absorption 被引量:1
17
作者 Qi-Hui Sun Hao-Cheng Zhai +4 位作者 Yi-Fan Liu Chun-Sheng Li Jun-Wei Wang Xian Jian Nasir Mahmood 《Rare Metals》 2025年第3期1856-1868,共13页
Ultra-wide absorption band and flexibility are needed in multi-scenario applications,however,current electromagnetic wave absorption materials(EMWAMs)are not capable enough to deliver due to rigid structure.Here,we ha... Ultra-wide absorption band and flexibility are needed in multi-scenario applications,however,current electromagnetic wave absorption materials(EMWAMs)are not capable enough to deliver due to rigid structure.Here,we have designed a porous flexible mat composed of Zn-doped carbon(Zn@C)nanofibers(NFs)having encapsulated uniformly dispersed FeCo nanoparticles(NPs)(FeCo/Zn@C)as ultra-wideband absorber.During the electrospinning,the Fe^(3+),Co^(2+)and Zn^(2+)are uniformly immobilized within the NFs nanocrystallization process.Subsequently,the Kirkendall effect is deployed to trigger the generation of FeCo NPs and porous framework under thermal annealing.The FeCo/Zn@C NFs effectively favor magnetic-dielectric synergies due to the coexistence of magnetic FeCo NPs and dielectric carbon components.One-dimensional porous fiber prolongs the attenuation path and enhances multi-scattering and reflection.While the FeCo NPs encapsulated in Zn-doped carbon NFs provide abundant dipole and interfacial polarization.These favorable factors synergistically enhance absorption performance,resulting in a reflection loss value of-71.58 dB.Moreover,by varying the thickness of absorbers,effective absorption bandwidth spans from 4.26 to 18.00 GHz.Hence,this work offers innovative insights for fabricating advanced EMWAMs. 展开更多
关键词 FeCo nanoparticles Multi-interface structure Flexible mat Electromagnetic wave absorption
原文传递
Energy transfer enhanced photocatalytic hydrogen evolution in organic heterostructure nanoparticles via flash nanoprecipitation processing 被引量:1
18
作者 Miaojie Yu Weiwei Zhang +4 位作者 Xueyan Liu Guohui Zhao Jun Du Yongzhen Wu Wei-Hong Zhu 《Green Energy & Environment》 2025年第2期390-398,共9页
Organic nanophotocatalysts are promising candidates for solar fuels production,but they still face the challenge of unfavorable geminate recombination due to the limited exciton diffusion lengths.Here,we introduce a b... Organic nanophotocatalysts are promising candidates for solar fuels production,but they still face the challenge of unfavorable geminate recombination due to the limited exciton diffusion lengths.Here,we introduce a binary nanophotocatalyst fabricated by blending two polymers,PS-PEG5(PS)and PBT-PEG5(PBT),with matched absorption and emission spectra,enabling a Forster resonance energy transfer(FRET)process for enhanced photocatalysis.These heterostructure nanophotocatalysts are processed using a facile and scalable flash nanoprecipitation(FNP)technique with precious kinetic control over binary nanoparticle formation.The resulting nanoparticles exhibit an exceptional photocatalytic hydrogen evolution rate up to 65 mmol g^(-1) h^(-1),2.5 times higher than that single component nanoparticles.Characterizations through fluorescence spectra and transient absorption spectra confirm the hetero-energy transfer within the binary nanoparticles,which prolongs the excited-state lifetime and extends the namely“effective exciton diffusion length”.Our finding opens new avenues for designing efficient organic photocatalysts by improving exciton migration. 展开更多
关键词 Polymer photocatalysts nanoparticles Hydrogen evolution Forster resonance energy transfer
在线阅读 下载PDF
Cerium Oxide Nanoparticles Alleviate Enhanced UV-B Radiation-Induced Stress in Wheat Seedling Roots by Regulating Reactive Oxygen Species 被引量:1
19
作者 Cheng Sun Chen Zhao +2 位作者 Guohua Wang Qianwen Mao Rong Han 《Phyton-International Journal of Experimental Botany》 2025年第2期455-479,共25页
Enhanced UV-B radiation represents a major environmental factor impacting global cereal production.Researchers have explored various approaches to reduce the detrimental impact of UV-B radiation on crops.Recently,engi... Enhanced UV-B radiation represents a major environmental factor impacting global cereal production.Researchers have explored various approaches to reduce the detrimental impact of UV-B radiation on crops.Recently,engineered nanoparticles,particularly cerium oxide nanoparticles(CeO_(2)-NPs),have attracted widespread interest for their ability to boost plant tolerance to a range of abiotic stresses.This study investigates how CeO_(2)-NPs application affects the morphology,physiology,biochemistry,and transcriptomics profiles of wheat seedling roots subjected to enhanced UV-B stress.The findings demonstrate that CeO_(2)-NPs notably promoted root length,fresh and dry weights,and root activity(p<0.05)under enhanced UV-B stress.CeO_(2)-NP treatment reduced the content of hydrogen peroxide<(H_(2)O_(2))and malondialdehyde(MDA)in wheat,alleviating oxidative damage in seedling roots and partially restoring the root phenotype.Under non-UV-B stress conditions,CeO_(2)-NP treatment triggered the difference of 237 transcripts in plants relative to the control group.Under enhanced UV-B stress,CeO_(2)-NP treatment exhibited differentially expressed genes(DEGs)linked to the antioxidant defense mechanism responsible for reactive oxygen species(ROS)scavenging,compared to the non-nanoparticle control.This suggests that ROS scavenging may be a key mechanism by which CeO_(2)-NPs enhance wheat resistance to enhanced UV-B radiation.This study elucidates a potential molecular mechanism through which CeO_(2)nanoparticles may enhance wheat tolerance to UV-B stress. 展开更多
关键词 Cerium oxide nanoparticles UV-B stress ROS scavenging transcriptomics analysis
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部