摘要
Enhanced UV-B radiation represents a major environmental factor impacting global cereal production.Researchers have explored various approaches to reduce the detrimental impact of UV-B radiation on crops.Recently,engineered nanoparticles,particularly cerium oxide nanoparticles(CeO_(2)-NPs),have attracted widespread interest for their ability to boost plant tolerance to a range of abiotic stresses.This study investigates how CeO_(2)-NPs application affects the morphology,physiology,biochemistry,and transcriptomics profiles of wheat seedling roots subjected to enhanced UV-B stress.The findings demonstrate that CeO_(2)-NPs notably promoted root length,fresh and dry weights,and root activity(p<0.05)under enhanced UV-B stress.CeO_(2)-NP treatment reduced the content of hydrogen peroxide<(H_(2)O_(2))and malondialdehyde(MDA)in wheat,alleviating oxidative damage in seedling roots and partially restoring the root phenotype.Under non-UV-B stress conditions,CeO_(2)-NP treatment triggered the difference of 237 transcripts in plants relative to the control group.Under enhanced UV-B stress,CeO_(2)-NP treatment exhibited differentially expressed genes(DEGs)linked to the antioxidant defense mechanism responsible for reactive oxygen species(ROS)scavenging,compared to the non-nanoparticle control.This suggests that ROS scavenging may be a key mechanism by which CeO_(2)-NPs enhance wheat resistance to enhanced UV-B radiation.This study elucidates a potential molecular mechanism through which CeO_(2)nanoparticles may enhance wheat tolerance to UV-B stress.
基金
supported by Graduate Innovation Project of Shanxi Normal University(Grant No.2021Y443).