This study explores the impact of human-AI collaborative teaching strategies on English teachers in secondary schools.Based on semi-structured interviews with five English teachers in Jiangxi Province,thematic analysi...This study explores the impact of human-AI collaborative teaching strategies on English teachers in secondary schools.Based on semi-structured interviews with five English teachers in Jiangxi Province,thematic analysis was conducted using the SAMR,UTAUT,and GHEX-IPACK theoretical frameworks.The findings indicate that AI technology is primarily applied in scenarios such as resource generation,assignment distribution,and learning analytics.By substituting traditional tools,enhancing teaching interactions,and reconstructing instructional processes,AI facilitates a shift in teaching strategies from“teacher-led”to“human-AI collaboration”.Teachers generally recognized the potential of this model for improving efficiency and supporting personalized learning,but also pointed out challenges,including data bias,hardware limitations,and a lack of emotional interaction.The study suggests that achieving deep human-AI collaboration requires balancing technological efficacy with humanistic care relying on blended instructional design and teacher training to optimize teachers’knowledge structures.This research preliminary constructs a practical model of human-AI collaboration in secondary school English education,providing insights for teacher professional development.展开更多
The rapid integration of artificial intelligence(AI)into software development,driven by large language models(LLMs),is reshaping the role of programmers from traditional coders into strategic collaborators within Indu...The rapid integration of artificial intelligence(AI)into software development,driven by large language models(LLMs),is reshaping the role of programmers from traditional coders into strategic collaborators within Industry 4.0 ecosystems.This qualitative study employs a hermeneutic phenomenological approach to explore the lived experiences of Information Technology(IT)professionals as they navigate a dynamic technological landscape marked by intelligent automation,shifting professional identities,and emerging ethical concerns.Findings indicate that developers are actively adapting to AI-augmented environments by engaging in continuous upskilling,prompt engineering,interdisciplinary collaboration,and heightened ethical awareness.However,participants also voiced growing concerns about the reliability and security of AI-generated code,noting that these tools can introduce hidden vulnerabilities and reduce critical engagement due to automation bias.Many described instances of flawed logic,insecure patterns,or syntactically correct but contextually inappropriate suggestions,underscoring the need for rigorous human oversight.Additionally,the study reveals anxieties around job displacement and the gradual erosion of fundamental coding skills,particularly in environments where AI tools dominate routine development tasks.These findings highlight an urgent need for educational reforms,industry standards,and organizational policies that prioritize both technical robustness and the preservation of human expertise.As AI becomes increasingly embedded in software engineering workflows,this research offers timely insights into how developers and organizations can responsibly integrate intelligent systems to promote accountability,resilience,and innovation across the software development lifecycle.展开更多
Two-phase equilibria between the ferromagnetic fcc and the paramagnetic fcc phase from 800 ℃ to 900 ℃ in the Co-rich region have been detected by the diffusion couple technique. Two phase separation region of the fc...Two-phase equilibria between the ferromagnetic fcc and the paramagnetic fcc phase from 800 ℃ to 900 ℃ in the Co-rich region have been detected by the diffusion couple technique. Two phase separation region of the fcc has been confirmed along the Curie temperature.The phase equilibria including the present results and the thermodynamic data of the Co-Cr system reported in the literature were analyzed on the basis of the thermodynamic evaluation. A set of thermodynamic values for the liquid, fcc, hcp, bcc, sigma phases was obtained. The calculated phase equilibria were in good agreement with most of the experimental data.展开更多
The surface condition, some properties and ion releasing behavior of cobalt-chromium (Co-Cr) dental alloy formed by selective laser melting (SLM) technique were investigated. Before porcelain fused firing, the sur...The surface condition, some properties and ion releasing behavior of cobalt-chromium (Co-Cr) dental alloy formed by selective laser melting (SLM) technique were investigated. Before porcelain fused firing, the surface condition of the Co-Cr alloy was observed using a scanning electron microscope (SEM), and then the density and hardness were examined. After porcelain fused firing, the interface of porcelain and alloy was observed, and then the metal-ion release of the samples was tested. SLM technique provides Co-Cr alloy higher hardness than casting method. After degassing-oxidation procedure and porcelain fused firing, the interface of the alloy and porcelain showed excellent combination. Co ion was more than Cr ion released from SLM Co-Cr alloy, the amounts of Co and Cr ions were safe according to ISO security criterion. Considering the properties before and after porcelain fused sintering process, SLM technique is suitable for dental Co-Cr alloy restoration.展开更多
The porcelain fracture caused by low metal-ceramic bond strength is a critical issue in porcelain fused to metal(PFM) restorations. Surface roughening methods, such as sand blasting, acid etching and alkaline degrea...The porcelain fracture caused by low metal-ceramic bond strength is a critical issue in porcelain fused to metal(PFM) restorations. Surface roughening methods, such as sand blasting, acid etching and alkaline degreasing for the metal matrix are used to increase bond strength. However, the metal matrix of PFM processed by selective laser melting(SLM) has natural rough surface. To explore the effect of the original roughness on metal-ceramic bond strength, two groups of specimen are fabricated by SLM. One group of specimen surface is polished smooth while another group remains the original rough surface. The dental porcelain is fused to the specimens' surfaces according to the ISO 9693:1999 standard. To gain the bond strength, a three-point bending test is carried out and X ray energy spectrum analysis(EDS), scanning electron microscope(SEM) are used to show fracture mode. The results show that the mean bond strength is 116.5 16 MPa of the group with rough surface(Ra= 17.2), and the fracture mode is cohesive. However, when the surface is smooth (Ra =3.8), the mean bond strength is 74.5 MPa _+ 5 MPa and the fracture mode is mixed. The original surface with prominent structures formed by the partly melted powder particles, not only increases surface roughness but also significantly improves the bond strength by forming strong mechanical lock effect. Statistical analysis (Student's t-test) demonstrates a significant difference (p〈0.05) of the mean value of bond strength between the two groups. The experiments indicate the natural rough surface can enhance the metal-ceramic bond strength to over four times the minimum value (25 MPa) of the ISO 9693:1999 standard. It is found that the natural rough surface of SLM-made PFM can eliminate the porcelain collapse defect produced by traditional casting method in PFM restorations.展开更多
基金supported by the Jinan University Teaching Research Project:Investigation and Path Optimization of Teachers’Lesson Planning Model Based on the“Human-AI Collaborative Workflow”,the 2025 Special Project for Quality Improvement and Upgrading Reform of Experimental Teaching at Jinan University(Project No.:82625039)the Higher Education Special Program of Guangdong Provincial Education Science Planning Project(Project No.:2023GXJK233).
文摘This study explores the impact of human-AI collaborative teaching strategies on English teachers in secondary schools.Based on semi-structured interviews with five English teachers in Jiangxi Province,thematic analysis was conducted using the SAMR,UTAUT,and GHEX-IPACK theoretical frameworks.The findings indicate that AI technology is primarily applied in scenarios such as resource generation,assignment distribution,and learning analytics.By substituting traditional tools,enhancing teaching interactions,and reconstructing instructional processes,AI facilitates a shift in teaching strategies from“teacher-led”to“human-AI collaboration”.Teachers generally recognized the potential of this model for improving efficiency and supporting personalized learning,but also pointed out challenges,including data bias,hardware limitations,and a lack of emotional interaction.The study suggests that achieving deep human-AI collaboration requires balancing technological efficacy with humanistic care relying on blended instructional design and teacher training to optimize teachers’knowledge structures.This research preliminary constructs a practical model of human-AI collaboration in secondary school English education,providing insights for teacher professional development.
文摘The rapid integration of artificial intelligence(AI)into software development,driven by large language models(LLMs),is reshaping the role of programmers from traditional coders into strategic collaborators within Industry 4.0 ecosystems.This qualitative study employs a hermeneutic phenomenological approach to explore the lived experiences of Information Technology(IT)professionals as they navigate a dynamic technological landscape marked by intelligent automation,shifting professional identities,and emerging ethical concerns.Findings indicate that developers are actively adapting to AI-augmented environments by engaging in continuous upskilling,prompt engineering,interdisciplinary collaboration,and heightened ethical awareness.However,participants also voiced growing concerns about the reliability and security of AI-generated code,noting that these tools can introduce hidden vulnerabilities and reduce critical engagement due to automation bias.Many described instances of flawed logic,insecure patterns,or syntactically correct but contextually inappropriate suggestions,underscoring the need for rigorous human oversight.Additionally,the study reveals anxieties around job displacement and the gradual erosion of fundamental coding skills,particularly in environments where AI tools dominate routine development tasks.These findings highlight an urgent need for educational reforms,industry standards,and organizational policies that prioritize both technical robustness and the preservation of human expertise.As AI becomes increasingly embedded in software engineering workflows,this research offers timely insights into how developers and organizations can responsibly integrate intelligent systems to promote accountability,resilience,and innovation across the software development lifecycle.
文摘Two-phase equilibria between the ferromagnetic fcc and the paramagnetic fcc phase from 800 ℃ to 900 ℃ in the Co-rich region have been detected by the diffusion couple technique. Two phase separation region of the fcc has been confirmed along the Curie temperature.The phase equilibria including the present results and the thermodynamic data of the Co-Cr system reported in the literature were analyzed on the basis of the thermodynamic evaluation. A set of thermodynamic values for the liquid, fcc, hcp, bcc, sigma phases was obtained. The calculated phase equilibria were in good agreement with most of the experimental data.
文摘The surface condition, some properties and ion releasing behavior of cobalt-chromium (Co-Cr) dental alloy formed by selective laser melting (SLM) technique were investigated. Before porcelain fused firing, the surface condition of the Co-Cr alloy was observed using a scanning electron microscope (SEM), and then the density and hardness were examined. After porcelain fused firing, the interface of porcelain and alloy was observed, and then the metal-ion release of the samples was tested. SLM technique provides Co-Cr alloy higher hardness than casting method. After degassing-oxidation procedure and porcelain fused firing, the interface of the alloy and porcelain showed excellent combination. Co ion was more than Cr ion released from SLM Co-Cr alloy, the amounts of Co and Cr ions were safe according to ISO security criterion. Considering the properties before and after porcelain fused sintering process, SLM technique is suitable for dental Co-Cr alloy restoration.
基金supported by the Royal Academy of Engineering Research Exchanges with China and UK(Grant No.2012-P02)National Key Technology R&D Program of Ministry of Science and Technology of China(Grant No.2012BAF08B03)National Natural Science Foundation of China(Grant No.51375189)
文摘The porcelain fracture caused by low metal-ceramic bond strength is a critical issue in porcelain fused to metal(PFM) restorations. Surface roughening methods, such as sand blasting, acid etching and alkaline degreasing for the metal matrix are used to increase bond strength. However, the metal matrix of PFM processed by selective laser melting(SLM) has natural rough surface. To explore the effect of the original roughness on metal-ceramic bond strength, two groups of specimen are fabricated by SLM. One group of specimen surface is polished smooth while another group remains the original rough surface. The dental porcelain is fused to the specimens' surfaces according to the ISO 9693:1999 standard. To gain the bond strength, a three-point bending test is carried out and X ray energy spectrum analysis(EDS), scanning electron microscope(SEM) are used to show fracture mode. The results show that the mean bond strength is 116.5 16 MPa of the group with rough surface(Ra= 17.2), and the fracture mode is cohesive. However, when the surface is smooth (Ra =3.8), the mean bond strength is 74.5 MPa _+ 5 MPa and the fracture mode is mixed. The original surface with prominent structures formed by the partly melted powder particles, not only increases surface roughness but also significantly improves the bond strength by forming strong mechanical lock effect. Statistical analysis (Student's t-test) demonstrates a significant difference (p〈0.05) of the mean value of bond strength between the two groups. The experiments indicate the natural rough surface can enhance the metal-ceramic bond strength to over four times the minimum value (25 MPa) of the ISO 9693:1999 standard. It is found that the natural rough surface of SLM-made PFM can eliminate the porcelain collapse defect produced by traditional casting method in PFM restorations.