[Objective] The aim of this study was to reveal the evolvement structures,especially the crystal characteristics of Chenopodium album L.under saline stress,so as to providing the first-hand data for utilizing biologic...[Objective] The aim of this study was to reveal the evolvement structures,especially the crystal characteristics of Chenopodium album L.under saline stress,so as to providing the first-hand data for utilizing biological techniques to control saline environment.[Method] Employing high definition display method of plant crystal structure and paraffin-section method,we performed a comparative study on the evolvement structures of C.album growing in high salinity areas in the coast of Egyptian Red Sea and common salinity areas in the grasslands in Changling County of Jilin Province.[Result] The regionally distributed crystal and the developed assimilating tissue of C.album are the key structural characteristics to antagonize the saline stress during the evolving process.Stem cortex of C.album growing in both the high salinity areas in coast of Egyptian Red Sea and common salinity areas in the grasslands in Changling County of Jilin Province has similar discontinuous crystal rings.Assimilating tissue in C.album growing in high salinity areas is highly developed than that in common salinity environment.Comparative analysis indicates that the developed stratum corneum and marrow is also the key structural characteristics to antagonize the saline stress.[Conclusion] Our results provide a valuable approach to study the salt-tolerance mechanism of plant using structural botanical techniques,i.e.,crystal may become the identification characteristics of salt tolerant plant.展开更多
This paper, an addendum to “Dialectical Thermodynamics’ solution to the conceptual imbroglio that is the reversible path”, this journal, 10, 775-799, was written in response to the requests of several readers to pr...This paper, an addendum to “Dialectical Thermodynamics’ solution to the conceptual imbroglio that is the reversible path”, this journal, 10, 775-799, was written in response to the requests of several readers to provide further evidence of the said “imbroglio”. The evidence here presented relates to the incompatibility existing between the total-entropy and the Gibbs energy prescriptions for the reversible path. The previously published proof of the negentropic nature of the transformation of heat into work is here included to validate out conclusions about the Gibbs energy perspective.展开更多
Friendship paradox states that individuals are likely to have fewer friends than their friends do,on average.Despite of its wide existence and appealing applications in real social networks,the mathematical understand...Friendship paradox states that individuals are likely to have fewer friends than their friends do,on average.Despite of its wide existence and appealing applications in real social networks,the mathematical understanding of friendship paradox is very limited.Only few works provide theoretical evidence of single-step and multi-step friendship paradoxes,given that the neighbors of interest are onehop and multi-hop away from the target node.However,they consider non-evolving networks,as opposed to the topology of real social networks that are constantly growing over time.We are thus motivated to present a first look into friendship paradox in evolving networks,where newly added nodes preferentially attach themselves to those with higher degrees.Our analytical verification of both single-step and multistep friendship paradoxes in evolving networks,along with comparison to the non-evolving counterparts,discloses that“friendship paradox is even more paradoxical in evolving networks”,primarily from three aspects:1)we demonstrate a strengthened effect of single-step friendship paradox in evolving networks,with a larger probability(more than 0.8)of a random node’s neighbors having higher average degree than the random node itself;2)we unravel higher effectiveness of multi-step friendship paradox in seeking for influential nodes in evolving networks,as the rate of reaching the max degree node can be improved by a factor of at least Θ(t^(2/3))with t being the network size;3)we empirically verify our findings through both synthetic and real datasets,which suggest high agreements of results and consolidate the reasonability of evolving model for real social networks.展开更多
Color is an essential component of beauty,a medium for expressing culture and attitude,and a catalyst for innovation and value creation.As Chinese styles and trends rise and return,traditional Chinese colors,regarded ...Color is an essential component of beauty,a medium for expressing culture and attitude,and a catalyst for innovation and value creation.As Chinese styles and trends rise and return,traditional Chinese colors,regarded as the most profound visual expressions of Chinese civilization,are infused with new vitality and contemporary values.These colors,imbued with philosophical concepts and poetic aesthetics,continue to evolve.展开更多
Academic journals are not only vital platforms for disseminating research findings but also key drivers of disciplinary and interdisciplinary advancement.As knowledge systems,research subjects,core questions,and appli...Academic journals are not only vital platforms for disseminating research findings but also key drivers of disciplinary and interdisciplinary advancement.As knowledge systems,research subjects,core questions,and application scenarios continuously evolve,research paradigms undergo constant innovation.Therefore,a journal’s scope must adapt to-and even lead-academic trends and demands.展开更多
The dynamic routing mechanism in evolvable networks enables adaptive reconfiguration of topol-ogical structures and transmission pathways based on real-time task requirements and data character-istics.However,the heig...The dynamic routing mechanism in evolvable networks enables adaptive reconfiguration of topol-ogical structures and transmission pathways based on real-time task requirements and data character-istics.However,the heightened architectural complexity and expanded parameter dimensionality in evolvable networks present significant implementation challenges when deployed in resource-con-strained environments.Due to the critical paths ignored,traditional pruning strategies cannot get a desired trade-off between accuracy and efficiency.For this reason,a critical path retention pruning(CPRP)method is proposed.By deeply traversing the computational graph,the dependency rela-tionship among nodes is derived.Then the nodes are grouped and sorted according to their contribu-tion value.The redundant operations are removed as much as possible while ensuring that the criti-cal path is not affected.As a result,computational efficiency is improved while a higher accuracy is maintained.On the CIFAR benchmark,the experimental results demonstrate that CPRP-induced pruning incurs accuracy degradation below 4.00%,while outperforming traditional feature-agnostic grouping methods by an average 8.98%accuracy improvement.Simultaneously,the pruned model attains a 2.41 times inference acceleration while achieving 48.92%parameter compression and 53.40%floating-point operations(FLOPs)reduction.展开更多
The history of the formation and development of Chinese civilization is also a civilization history of water conservancy. Water not only gives birth to Chinese civilization but also gives birth to the unique regional ...The history of the formation and development of Chinese civilization is also a civilization history of water conservancy. Water not only gives birth to Chinese civilization but also gives birth to the unique regional culture in Lingnan. In the past thousands of year, from the ancient myths and legends of Lingnan water conservancy culture to the digging of efficacious Canal's integration of the nationalities in Lingnan, to the blending of water and culture of the Xijiang River and the North River of the Zhujiang water system and the formation of urban river culture, development of its generation, deduction and inheritance has the mutual penetration with the formation of water system and the variation of water conservancy which mutually influence the historical evolvement of Lingnan regional culture.展开更多
Four-electron oxygen evolving reaction is limited by proton adsorption and desorption,making its reaction kinetics sluggish,which poses a major challenge for catalyst design.Here,we present an unsaturated coordination...Four-electron oxygen evolving reaction is limited by proton adsorption and desorption,making its reaction kinetics sluggish,which poses a major challenge for catalyst design.Here,we present an unsaturated coordination interface by constructing a fast electron transfer channel between Cu_(2)V_(2)O_(7)(CVO)and BiVO4(BVO).X-ray absorption spectroscopy(XAS)and theoretical calculations results confirm that CVO and BVO between interfaces are bonded by the way of unsaturated coordination oxygen(Ouc).The Ouc optimizes the O-O coupled energy barrier at the V active site and promotes the disconnection of O-H bond,which increases the photocurrent intensity of CVO by 6 times.In addition,due to the high electronegativity of the Ouc,the bonding energies of Bi-O and Cu-O at the interface are enhanced,resulting in the long-term stability of the photoanode during the water splitting.Finally,by integrating the working electrode with a polysilicon solar cell,we assembled a device that demonstrated exceptional catalytic performance,achieving a hydrogen production rate of 100.6μmol·cm^(-2),and maintaining a hydrogen-to-oxygen volume ratio of 2:1 after continuous operation for 4 h.This discovery aids in a deeper understanding of photoanode design and offers further insights for industrial applications.展开更多
基金Supported by Program from the Education Department of Jilin Prov-ince(2011191,2011359 )Natural Science Fund from Chang-chun Normal University~~
文摘[Objective] The aim of this study was to reveal the evolvement structures,especially the crystal characteristics of Chenopodium album L.under saline stress,so as to providing the first-hand data for utilizing biological techniques to control saline environment.[Method] Employing high definition display method of plant crystal structure and paraffin-section method,we performed a comparative study on the evolvement structures of C.album growing in high salinity areas in the coast of Egyptian Red Sea and common salinity areas in the grasslands in Changling County of Jilin Province.[Result] The regionally distributed crystal and the developed assimilating tissue of C.album are the key structural characteristics to antagonize the saline stress during the evolving process.Stem cortex of C.album growing in both the high salinity areas in coast of Egyptian Red Sea and common salinity areas in the grasslands in Changling County of Jilin Province has similar discontinuous crystal rings.Assimilating tissue in C.album growing in high salinity areas is highly developed than that in common salinity environment.Comparative analysis indicates that the developed stratum corneum and marrow is also the key structural characteristics to antagonize the saline stress.[Conclusion] Our results provide a valuable approach to study the salt-tolerance mechanism of plant using structural botanical techniques,i.e.,crystal may become the identification characteristics of salt tolerant plant.
文摘This paper, an addendum to “Dialectical Thermodynamics’ solution to the conceptual imbroglio that is the reversible path”, this journal, 10, 775-799, was written in response to the requests of several readers to provide further evidence of the said “imbroglio”. The evidence here presented relates to the incompatibility existing between the total-entropy and the Gibbs energy prescriptions for the reversible path. The previously published proof of the negentropic nature of the transformation of heat into work is here included to validate out conclusions about the Gibbs energy perspective.
基金supported by NSF China(No.61960206002,62020106005,42050105,62061146002)Shanghai Pilot Program for Basic Research–Shanghai Jiao Tong University.
文摘Friendship paradox states that individuals are likely to have fewer friends than their friends do,on average.Despite of its wide existence and appealing applications in real social networks,the mathematical understanding of friendship paradox is very limited.Only few works provide theoretical evidence of single-step and multi-step friendship paradoxes,given that the neighbors of interest are onehop and multi-hop away from the target node.However,they consider non-evolving networks,as opposed to the topology of real social networks that are constantly growing over time.We are thus motivated to present a first look into friendship paradox in evolving networks,where newly added nodes preferentially attach themselves to those with higher degrees.Our analytical verification of both single-step and multistep friendship paradoxes in evolving networks,along with comparison to the non-evolving counterparts,discloses that“friendship paradox is even more paradoxical in evolving networks”,primarily from three aspects:1)we demonstrate a strengthened effect of single-step friendship paradox in evolving networks,with a larger probability(more than 0.8)of a random node’s neighbors having higher average degree than the random node itself;2)we unravel higher effectiveness of multi-step friendship paradox in seeking for influential nodes in evolving networks,as the rate of reaching the max degree node can be improved by a factor of at least Θ(t^(2/3))with t being the network size;3)we empirically verify our findings through both synthetic and real datasets,which suggest high agreements of results and consolidate the reasonability of evolving model for real social networks.
文摘Color is an essential component of beauty,a medium for expressing culture and attitude,and a catalyst for innovation and value creation.As Chinese styles and trends rise and return,traditional Chinese colors,regarded as the most profound visual expressions of Chinese civilization,are infused with new vitality and contemporary values.These colors,imbued with philosophical concepts and poetic aesthetics,continue to evolve.
文摘Academic journals are not only vital platforms for disseminating research findings but also key drivers of disciplinary and interdisciplinary advancement.As knowledge systems,research subjects,core questions,and application scenarios continuously evolve,research paradigms undergo constant innovation.Therefore,a journal’s scope must adapt to-and even lead-academic trends and demands.
基金Supported by the National Key Research and Development Program of China(No.2022ZD0119003)and the National Natural Science Founda-tion of China(No.61834005).
文摘The dynamic routing mechanism in evolvable networks enables adaptive reconfiguration of topol-ogical structures and transmission pathways based on real-time task requirements and data character-istics.However,the heightened architectural complexity and expanded parameter dimensionality in evolvable networks present significant implementation challenges when deployed in resource-con-strained environments.Due to the critical paths ignored,traditional pruning strategies cannot get a desired trade-off between accuracy and efficiency.For this reason,a critical path retention pruning(CPRP)method is proposed.By deeply traversing the computational graph,the dependency rela-tionship among nodes is derived.Then the nodes are grouped and sorted according to their contribu-tion value.The redundant operations are removed as much as possible while ensuring that the criti-cal path is not affected.As a result,computational efficiency is improved while a higher accuracy is maintained.On the CIFAR benchmark,the experimental results demonstrate that CPRP-induced pruning incurs accuracy degradation below 4.00%,while outperforming traditional feature-agnostic grouping methods by an average 8.98%accuracy improvement.Simultaneously,the pruned model attains a 2.41 times inference acceleration while achieving 48.92%parameter compression and 53.40%floating-point operations(FLOPs)reduction.
文摘The history of the formation and development of Chinese civilization is also a civilization history of water conservancy. Water not only gives birth to Chinese civilization but also gives birth to the unique regional culture in Lingnan. In the past thousands of year, from the ancient myths and legends of Lingnan water conservancy culture to the digging of efficacious Canal's integration of the nationalities in Lingnan, to the blending of water and culture of the Xijiang River and the North River of the Zhujiang water system and the formation of urban river culture, development of its generation, deduction and inheritance has the mutual penetration with the formation of water system and the variation of water conservancy which mutually influence the historical evolvement of Lingnan regional culture.
基金supported by the Natural Science Foundation of China(Nos.22278094 and 22379033)Guangdong Graduate Education Innovation Program(No.2023JGXM_102)+2 种基金the Basic and Applied Basic Research Program of Guangzhou(No.SL2024A03J00499)the University Innovation Team Scientific Research Project of Guangzhou(No.202235246)Hainan Province Graduate Innovation Research Project(No.Qhyb2023-143).
文摘Four-electron oxygen evolving reaction is limited by proton adsorption and desorption,making its reaction kinetics sluggish,which poses a major challenge for catalyst design.Here,we present an unsaturated coordination interface by constructing a fast electron transfer channel between Cu_(2)V_(2)O_(7)(CVO)and BiVO4(BVO).X-ray absorption spectroscopy(XAS)and theoretical calculations results confirm that CVO and BVO between interfaces are bonded by the way of unsaturated coordination oxygen(Ouc).The Ouc optimizes the O-O coupled energy barrier at the V active site and promotes the disconnection of O-H bond,which increases the photocurrent intensity of CVO by 6 times.In addition,due to the high electronegativity of the Ouc,the bonding energies of Bi-O and Cu-O at the interface are enhanced,resulting in the long-term stability of the photoanode during the water splitting.Finally,by integrating the working electrode with a polysilicon solar cell,we assembled a device that demonstrated exceptional catalytic performance,achieving a hydrogen production rate of 100.6μmol·cm^(-2),and maintaining a hydrogen-to-oxygen volume ratio of 2:1 after continuous operation for 4 h.This discovery aids in a deeper understanding of photoanode design and offers further insights for industrial applications.