The effective valuation of catalyst supports in the catalytic oxidation makes the contribution to understand the support effect of great interest.Here,the role of active substrate in the performance and stability of C...The effective valuation of catalyst supports in the catalytic oxidation makes the contribution to understand the support effect of great interest.Here,the role of active substrate in the performance and stability of CuFe-Co ternary oxides was studied towards the complete catalytic oxidation of CO.The Cu-Fe-Co oxide thin films were deposited on copper grid mesh(CUGM)using one-step pulsed-spray evaporation chemical vapor deposition method.Crystalline structure and morphology analyses revealed nano-crystallite sizes and do me-top-like morphology.Synergistic effects between Cu,Fe and Co,which affect the surface Cu^2+,Fe^3+,Co^3+and chemisorbed oxygen species(O2 and OH)of thin films over the active support and thus result in better reducibility.The thin film catalysts supported on CUGM exhibited attractive catalytic activity compared to the te rnary oxides supported on ine rt grid mesh at a high gas hourly space velocity.Moreove r,the stability in time-on-stream of the ternary oxides on CUGM was evaluated in the CO oxidation for 30 h.The ad opted deposition strategy ofternary oxides on CUGM presents an excessive amount of adsorbed active oxygen species that play an impo rtant role in the complete CO oxidation.The catalysts supported on CUGM showed better catalytic conve rsion than that on inert grid mesh and some literature-reported noble metal oxides as well as transition metal oxides counterparts,revealing the beneficial effect of the CUGM suppo rt in the improvement of the catalytic performance.展开更多
The title compound [Cu(bix)2(NO3)z·H2P]n 1 (bix = 1,4-bis(imidazole-1-ylme-thyl) benzene) has been synthesized by hydrothermal method. Its crystal structure is of monoclinic, space group P1^- with a = 8.3...The title compound [Cu(bix)2(NO3)z·H2P]n 1 (bix = 1,4-bis(imidazole-1-ylme-thyl) benzene) has been synthesized by hydrothermal method. Its crystal structure is of monoclinic, space group P1^- with a = 8.3075(13), b = 9.4725(13), c = 10.0192(13) A, α = 91.088(4), β = 104.063(6), γ = 101.88(1), V = 746.5(3) A^3, Z = 1, C28H30N10O7Cu1, Mr = 682.16, Dc = 1.518 g/cm^3, μ = 0.796 mm^-1, F(000) = 353, the final R = 0.0535 and wR = 0.0996 for 2921 observed reflections with I 〉 2σ(I). Each bix ligand binds two Cu(Ⅱ) ions to form a 2-D(4,4) square grid layer, which is connected by hydrogen bonds showing large channels occupied by solvated water molecules and nitrate anions.展开更多
The hydrothermal reaction of 4-pyridylacrylic acid (4-HPYA) with (BF4) and PPh3 gives rise to an unprecedented luminescent molecular square grid, [Cu(Ⅰ)(4-PYA)(PPh3)]n (1) which may be used as a sensor. CCDC: 236419.
基金financial support from the MOST(No.2017YFA0402800)the Basic Science Center Program for Ordered Energy Conversion of the National Natural Science Foundation of China(No.51888103)。
文摘The effective valuation of catalyst supports in the catalytic oxidation makes the contribution to understand the support effect of great interest.Here,the role of active substrate in the performance and stability of CuFe-Co ternary oxides was studied towards the complete catalytic oxidation of CO.The Cu-Fe-Co oxide thin films were deposited on copper grid mesh(CUGM)using one-step pulsed-spray evaporation chemical vapor deposition method.Crystalline structure and morphology analyses revealed nano-crystallite sizes and do me-top-like morphology.Synergistic effects between Cu,Fe and Co,which affect the surface Cu^2+,Fe^3+,Co^3+and chemisorbed oxygen species(O2 and OH)of thin films over the active support and thus result in better reducibility.The thin film catalysts supported on CUGM exhibited attractive catalytic activity compared to the te rnary oxides supported on ine rt grid mesh at a high gas hourly space velocity.Moreove r,the stability in time-on-stream of the ternary oxides on CUGM was evaluated in the CO oxidation for 30 h.The ad opted deposition strategy ofternary oxides on CUGM presents an excessive amount of adsorbed active oxygen species that play an impo rtant role in the complete CO oxidation.The catalysts supported on CUGM showed better catalytic conve rsion than that on inert grid mesh and some literature-reported noble metal oxides as well as transition metal oxides counterparts,revealing the beneficial effect of the CUGM suppo rt in the improvement of the catalytic performance.
文摘The title compound [Cu(bix)2(NO3)z·H2P]n 1 (bix = 1,4-bis(imidazole-1-ylme-thyl) benzene) has been synthesized by hydrothermal method. Its crystal structure is of monoclinic, space group P1^- with a = 8.3075(13), b = 9.4725(13), c = 10.0192(13) A, α = 91.088(4), β = 104.063(6), γ = 101.88(1), V = 746.5(3) A^3, Z = 1, C28H30N10O7Cu1, Mr = 682.16, Dc = 1.518 g/cm^3, μ = 0.796 mm^-1, F(000) = 353, the final R = 0.0535 and wR = 0.0996 for 2921 observed reflections with I 〉 2σ(I). Each bix ligand binds two Cu(Ⅱ) ions to form a 2-D(4,4) square grid layer, which is connected by hydrogen bonds showing large channels occupied by solvated water molecules and nitrate anions.
文摘The hydrothermal reaction of 4-pyridylacrylic acid (4-HPYA) with (BF4) and PPh3 gives rise to an unprecedented luminescent molecular square grid, [Cu(Ⅰ)(4-PYA)(PPh3)]n (1) which may be used as a sensor. CCDC: 236419.