LetΩbe homogeneous of degree zero,integrable on S^(d−1) and have vanishing moment of order one,a be a function on R^(d) such that ∇a∈L^(∞)(R^(d)).Let T*_(Ω,a) be the maximaloperator associated with the d-dimensional...LetΩbe homogeneous of degree zero,integrable on S^(d−1) and have vanishing moment of order one,a be a function on R^(d) such that ∇a∈L^(∞)(R^(d)).Let T*_(Ω,a) be the maximaloperator associated with the d-dimensional Calder´on commutator defined by T*_(Ωa)f(x):=sup_(ε>0)|∫_(|x-y|>ε)^Ω(x-y)/|x-y|^(d+1)(a(x)-a(y))f(y)dy.In this paper,the authors establish bilinear sparse domination for T*_(Ω,a) under the assumption Ω∈L∞(Sd−1).As applications,some quantitative weighted bounds for T*_(Ω,a) are obtained.展开更多
Let Ω be homogeneous of degree zero,integrable on S^(n−1) and have mean value zero,T_(Ω) be the homogeneous singular integral operator with kernel Ω(x)/|x|^(n) and[b,T_(Ω)]be the commutator of T_(Ω)with symbol b∈BMO(...Let Ω be homogeneous of degree zero,integrable on S^(n−1) and have mean value zero,T_(Ω) be the homogeneous singular integral operator with kernel Ω(x)/|x|^(n) and[b,T_(Ω)]be the commutator of T_(Ω)with symbol b∈BMO(R^(n)).In this paper,the authors prove that if sup ζ∈S^(n−1)∫Sn−1^(|Ω(θ)|log^(β)(1/|θ·ζ|)dθ<∞ with β>2,then[b,T_(Ω)]is bounded on Triebel–Lizorkin space F^(0,q)p(R^(n))provided that 1+1/β−1<p,q<β.展开更多
In this paper,the authors study the fractional Calderon type commutator T_(Ω,α)^(A)and its maximal operator M_(Ω,α)^(A)with kernels having some kinds of Log-type Dini-condition and obtain the compactness on Morrey...In this paper,the authors study the fractional Calderon type commutator T_(Ω,α)^(A)and its maximal operator M_(Ω,α)^(A)with kernels having some kinds of Log-type Dini-condition and obtain the compactness on Morrey spaces L^(p,λ)(R^(n)).展开更多
For 1<p<∞,Coifman-Rochberg-Weiss established L^(p) boundedness of commutators of smooth kernels.Later,many works tried to weaken the smooth condition.In this paper,we extend these mentioned results to the case ...For 1<p<∞,Coifman-Rochberg-Weiss established L^(p) boundedness of commutators of smooth kernels.Later,many works tried to weaken the smooth condition.In this paper,we extend these mentioned results to the case of non-homogeneous but with strong H¨ormander condition.Our main skills lie in wavelet decomposition,wavelet commutators,Hardy-Littlewood maximal operator and Fefferman-Stein's vector-valued maximum function Theorem.展开更多
In this paper we present certain bilinear estimates for commutators on Besov spaces with variable smoothness and integrability,and under no vanishing assumptions on the divergence of vector fields.Such commutator esti...In this paper we present certain bilinear estimates for commutators on Besov spaces with variable smoothness and integrability,and under no vanishing assumptions on the divergence of vector fields.Such commutator estimates are motivated by the study of well-posedness results for some models in incompressible fuid mechanics.展开更多
In this paper,the authors study the multilinear commutators generated by a class of multilinear singular integral operators with generalized kernels and Lipschitz functions.By establishing the sharp maximal estimates,...In this paper,the authors study the multilinear commutators generated by a class of multilinear singular integral operators with generalized kernels and Lipschitz functions.By establishing the sharp maximal estimates,the boundedness of this kind of multilinear commutators on product of weighted Lebesgue spaces can be obtained.展开更多
In this paper,the authors prove that the parameterized area integralμ_(Ω,S)^(ρ)and the parameterized Littlewood-Paley g_(δ)^(*)-functionμ_(Ω,δ)^(*,ρ)are bounded on two-weight grand homogeneous variable Herz-Mo...In this paper,the authors prove that the parameterized area integralμ_(Ω,S)^(ρ)and the parameterized Littlewood-Paley g_(δ)^(*)-functionμ_(Ω,δ)^(*,ρ)are bounded on two-weight grand homogeneous variable Herz-Morrey spaces MK_(p),θ,q(·))^(α(·),λ)(ω_(1),ω_(2)),where θ>0,λ∈(2,∞),q(·)∈B(R^(n)),α(·)∈L^(∞)(R^(n)),ω_(1)∈A_(p_(ω_(1)))for p_(ω_(1))∈[1,∞]and ω_(2) is a weight.Furthermore,the authors prove that the commutators[b,μ_(Ω,S)^(ρ)]which is formed by b∈BMO(R^(n))and the μ_(Ω,S)^(ρ),and the[b,μ_(Ω,δ)^(*,ρ)]generated by b∈BMO(R^(n))and theμ_(Ω,δ)^(*,ρ)are bounded on MK_(p),θ,q(·))^(α(·),λ)(ω_(1),ω_(2)),respectively.展开更多
The main goal of this paper is to establish the boundedness of bilinear strongly singular operator T^(-)and its commutator Tb_(1),b_(2)on generalized Morrey spaces M_(p)^(u)(μ)over non-homogeneous metric measure spac...The main goal of this paper is to establish the boundedness of bilinear strongly singular operator T^(-)and its commutator Tb_(1),b_(2)on generalized Morrey spaces M_(p)^(u)(μ)over non-homogeneous metric measure spaces.Under assumption that the Lebesgue measurable functions u,u1 and u2 belong to W_(τ)forτ∈(0,2),and u1u2=u.The authors prove that T_(-)is bounded from product spaces M_(p1)^(u1)(μ)×M_(p2)^(u2)(μ)into spaces M_(p)^(u)(μ),where 1/p=1/p_(1)+1/p_(2)with 1<p1,p2<∞;and also bounded from product spaces M_(p1)^(u1)(μ)×M_(p2)^(u2)(μ)into generalized weak Morrey spaces WM_(p)^(u)(μ).Furthermore,the author also show that commutator Tb1,b2 generated by b_(1),b_(2)∈RBMO(μ)and T is bounded from product spaces M_(p1)^(u1)(μ)×M_(p2)^(u2)(μ)into spaces M_(p)^(u)(μ).展开更多
Let(X,d,μ)be a non-homogeneous metric measure space satisfying the geometrically doubling condition and the upper doubling condition.In this setting,the authors prove that the commutator M_(b)^(α)formed by b∈RBMO(...Let(X,d,μ)be a non-homogeneous metric measure space satisfying the geometrically doubling condition and the upper doubling condition.In this setting,the authors prove that the commutator M_(b)^(α)formed by b∈RBMO(μ)and the fractional maximal function M^((α))is bounded from Lebesgue spaces L^(p)(μ)into spaces L^(q)(μ),where 1/q=1/p-αforα∈(0,1)and p∈(1,1/α).Furthermore,the boundedness of the M_(b)^(α)on Orlicz spaces L^Φ(μ)is established.展开更多
In this paper,we introduce the weighted multilinear p-adic Hardy operator and weighted multilinear p-adic Ces`aro operator,we also obtain the boundedness of these two operators on the product of p-adic Herz spaces and...In this paper,we introduce the weighted multilinear p-adic Hardy operator and weighted multilinear p-adic Ces`aro operator,we also obtain the boundedness of these two operators on the product of p-adic Herz spaces and p-adic Morrey-Herz spaces,the corresponding operator norms are also established in each case.Moreover,the boundedness of commutators of these two operators with symbols in central bounded mean oscillation spaces and Lipschitz spaces on p-adic Morrey-Herz spaces are also given.展开更多
文摘LetΩbe homogeneous of degree zero,integrable on S^(d−1) and have vanishing moment of order one,a be a function on R^(d) such that ∇a∈L^(∞)(R^(d)).Let T*_(Ω,a) be the maximaloperator associated with the d-dimensional Calder´on commutator defined by T*_(Ωa)f(x):=sup_(ε>0)|∫_(|x-y|>ε)^Ω(x-y)/|x-y|^(d+1)(a(x)-a(y))f(y)dy.In this paper,the authors establish bilinear sparse domination for T*_(Ω,a) under the assumption Ω∈L∞(Sd−1).As applications,some quantitative weighted bounds for T*_(Ω,a) are obtained.
基金Supported by NSFC(No.11971295)Guangdong Higher Education Teaching Reform Project(No.2023307)。
文摘Let Ω be homogeneous of degree zero,integrable on S^(n−1) and have mean value zero,T_(Ω) be the homogeneous singular integral operator with kernel Ω(x)/|x|^(n) and[b,T_(Ω)]be the commutator of T_(Ω)with symbol b∈BMO(R^(n)).In this paper,the authors prove that if sup ζ∈S^(n−1)∫Sn−1^(|Ω(θ)|log^(β)(1/|θ·ζ|)dθ<∞ with β>2,then[b,T_(Ω)]is bounded on Triebel–Lizorkin space F^(0,q)p(R^(n))provided that 1+1/β−1<p,q<β.
文摘In this paper,the authors study the fractional Calderon type commutator T_(Ω,α)^(A)and its maximal operator M_(Ω,α)^(A)with kernels having some kinds of Log-type Dini-condition and obtain the compactness on Morrey spaces L^(p,λ)(R^(n)).
基金partially supported by the research grant of Macao University of Science and Technology(FRG-22-075-MCMS)the Macao Government Research Funding(FDCT0128/2022/A)+2 种基金the Science and Technology Development Fund of Macao SAR(005/2022/ALC)the Science and Technology Development Fund of Macao SAR(0045/2021/A)Macao University of Science and Technology(FRG-20-021-MISE)。
文摘For 1<p<∞,Coifman-Rochberg-Weiss established L^(p) boundedness of commutators of smooth kernels.Later,many works tried to weaken the smooth condition.In this paper,we extend these mentioned results to the case of non-homogeneous but with strong H¨ormander condition.Our main skills lie in wavelet decomposition,wavelet commutators,Hardy-Littlewood maximal operator and Fefferman-Stein's vector-valued maximum function Theorem.
文摘In this paper we present certain bilinear estimates for commutators on Besov spaces with variable smoothness and integrability,and under no vanishing assumptions on the divergence of vector fields.Such commutator estimates are motivated by the study of well-posedness results for some models in incompressible fuid mechanics.
基金Supported by the National Natural Science Foundation of China(11671397,11571160,12071052)the Yue Qi Young Scholar of China University of Mining and Technology(Beijing)。
文摘In this paper,the authors study the multilinear commutators generated by a class of multilinear singular integral operators with generalized kernels and Lipschitz functions.By establishing the sharp maximal estimates,the boundedness of this kind of multilinear commutators on product of weighted Lebesgue spaces can be obtained.
基金Supported by the National Natural Science Foundation of China(Grant No.12201500)。
文摘In this paper,the authors prove that the parameterized area integralμ_(Ω,S)^(ρ)and the parameterized Littlewood-Paley g_(δ)^(*)-functionμ_(Ω,δ)^(*,ρ)are bounded on two-weight grand homogeneous variable Herz-Morrey spaces MK_(p),θ,q(·))^(α(·),λ)(ω_(1),ω_(2)),where θ>0,λ∈(2,∞),q(·)∈B(R^(n)),α(·)∈L^(∞)(R^(n)),ω_(1)∈A_(p_(ω_(1)))for p_(ω_(1))∈[1,∞]and ω_(2) is a weight.Furthermore,the authors prove that the commutators[b,μ_(Ω,S)^(ρ)]which is formed by b∈BMO(R^(n))and the μ_(Ω,S)^(ρ),and the[b,μ_(Ω,δ)^(*,ρ)]generated by b∈BMO(R^(n))and theμ_(Ω,δ)^(*,ρ)are bounded on MK_(p),θ,q(·))^(α(·),λ)(ω_(1),ω_(2)),respectively.
基金Supported by the National Natural Science Foundation of China(Grant No.12201500)the Science Foundation for Youths of Gansu Province(Grant No.22JR5RA173)the Young Teachers’Scientific Research Ability Promotion Project of Northwest Normal University(Grant No.NWNU-LKQN2020-07)。
文摘The main goal of this paper is to establish the boundedness of bilinear strongly singular operator T^(-)and its commutator Tb_(1),b_(2)on generalized Morrey spaces M_(p)^(u)(μ)over non-homogeneous metric measure spaces.Under assumption that the Lebesgue measurable functions u,u1 and u2 belong to W_(τ)forτ∈(0,2),and u1u2=u.The authors prove that T_(-)is bounded from product spaces M_(p1)^(u1)(μ)×M_(p2)^(u2)(μ)into spaces M_(p)^(u)(μ),where 1/p=1/p_(1)+1/p_(2)with 1<p1,p2<∞;and also bounded from product spaces M_(p1)^(u1)(μ)×M_(p2)^(u2)(μ)into generalized weak Morrey spaces WM_(p)^(u)(μ).Furthermore,the author also show that commutator Tb1,b2 generated by b_(1),b_(2)∈RBMO(μ)and T is bounded from product spaces M_(p1)^(u1)(μ)×M_(p2)^(u2)(μ)into spaces M_(p)^(u)(μ).
基金the Science Foundation for Youths of Gansu Province(Grant No.22JR5RA173)Master Foundation of Northwest Normal University(Grant No.2022KYZZ-S121).
文摘Let(X,d,μ)be a non-homogeneous metric measure space satisfying the geometrically doubling condition and the upper doubling condition.In this setting,the authors prove that the commutator M_(b)^(α)formed by b∈RBMO(μ)and the fractional maximal function M^((α))is bounded from Lebesgue spaces L^(p)(μ)into spaces L^(q)(μ),where 1/q=1/p-αforα∈(0,1)and p∈(1,1/α).Furthermore,the boundedness of the M_(b)^(α)on Orlicz spaces L^Φ(μ)is established.
文摘In this paper,we introduce the weighted multilinear p-adic Hardy operator and weighted multilinear p-adic Ces`aro operator,we also obtain the boundedness of these two operators on the product of p-adic Herz spaces and p-adic Morrey-Herz spaces,the corresponding operator norms are also established in each case.Moreover,the boundedness of commutators of these two operators with symbols in central bounded mean oscillation spaces and Lipschitz spaces on p-adic Morrey-Herz spaces are also given.