In the theory of general relativity, the finding of the Einstein Field Equation happens in a complex mathematical operation, a process we don’t need any more. Through a new theory in vector analysis, we’ll see that ...In the theory of general relativity, the finding of the Einstein Field Equation happens in a complex mathematical operation, a process we don’t need any more. Through a new theory in vector analysis, we’ll see that we can calculate the components of the Ricci tensor, Ricci scalar, and Einstein Field Equation directly in an easy way without the need to use general relativity theory hypotheses, principles, and symbols. Formulating the general relativity theory through another theory will make it easier to understand this relativity theory and will help combining it with electromagnetic theory and quantum mechanics easily.展开更多
We introduce the notion of commuting Ricci tensor for real hypersurfaces in the complex quadric Qm = SOm+2/SOmSO2. It is shown that the commuting Ricci tensor gives that the unit normal vector field N becomes -princ...We introduce the notion of commuting Ricci tensor for real hypersurfaces in the complex quadric Qm = SOm+2/SOmSO2. It is shown that the commuting Ricci tensor gives that the unit normal vector field N becomes -principal or -isotropic. Then according to each case, we give a complete classification of Hopf real hypersurfaces in Qm = SOm+2/SOmSO2 with commuting Ricci tensor.展开更多
t The authors consider the problem of conformally deforming a metric such that the k-curvature defined by an elementary symmetric function of the eigenvalues of the Bakry-Emery Ricci tensor on a compact manifold with ...t The authors consider the problem of conformally deforming a metric such that the k-curvature defined by an elementary symmetric function of the eigenvalues of the Bakry-Emery Ricci tensor on a compact manifold with boundary to a prescribed function. A consequence of our main result is that there exists a complete metric such that the Monge-Amp^re type equation with respect to its Bakry-Emery Ricci tensor is solvable, provided that the initial Bakry-Emery Ricci tensor belongs to a negative convex cone.展开更多
We consider the problem of deforming a metric in its conformal class on a closed manifold, such that the k-curvature defined by the Bakry-mery Ricci tensor is a constant. We show its solvability on the manifold, provi...We consider the problem of deforming a metric in its conformal class on a closed manifold, such that the k-curvature defined by the Bakry-mery Ricci tensor is a constant. We show its solvability on the manifold, provided that the initial Bakry-mery Ricci tensor belongs to a negative cone. Moveover, the Monge-Ampère type equation with respect to the Bakry-mery Ricci tensor is also considered.展开更多
In this article, we study the steady, shrinking, and expanding Kahler-Ricci solitons with vanishing Bochner-Weyl tensor and prove that, under this condition, the Ricci solitons must have constant holomorphic sectional...In this article, we study the steady, shrinking, and expanding Kahler-Ricci solitons with vanishing Bochner-Weyl tensor and prove that, under this condition, the Ricci solitons must have constant holomorphic sectional curvature.展开更多
We show that closed shrinking gradient Ricci solitons with positive Ricci curvature and sufficiently pinched Weyl tensor are Einstein. When Weyl tensor vanishes, this has been proved before but our proof here is much ...We show that closed shrinking gradient Ricci solitons with positive Ricci curvature and sufficiently pinched Weyl tensor are Einstein. When Weyl tensor vanishes, this has been proved before but our proof here is much simpler.展开更多
We introduce a new notion of pseudo-anti commuting Ricci tensor for real hypersurfaces in the noncompact complex hyperbolic quadric Q^(m?)= SO_2~0,_m/SO_2SO_m and give a complete classi?cation of these hypersurfaces.
We investigate the M-eigenvalues of the Riemann curvature tensor in the higher dimensional conformally flat manifold.The expressions of Meigenvalues and M-eigenvectors are presented in this paper.As a special case,M-e...We investigate the M-eigenvalues of the Riemann curvature tensor in the higher dimensional conformally flat manifold.The expressions of Meigenvalues and M-eigenvectors are presented in this paper.As a special case,M-eigenvalues of conformal flat Einstein manifold have also been discussed,and the conformal the invariance of M-eigentriple has been found.We also reveal the relationship between M-eigenvalue and sectional curvature of a Riemannian manifold.We prove that the M-eigenvalue can determine the Riemann curvature tensor uniquely.We also give an example to compute the Meigentriple of de Sitter spacetime which is well-known in general relativity.展开更多
A short description of structural and virtual Kirichenko tensors that form a complete system of first-order differential-geometrical invariants of an arbitrary almost Hermitian structure is given.A characterization of...A short description of structural and virtual Kirichenko tensors that form a complete system of first-order differential-geometrical invariants of an arbitrary almost Hermitian structure is given.A characterization of nearly-Khlerian structures in terms of Kirichenko tensors is also given.展开更多
In this paper, a new Ricci flow is canonically introduced in Finsler Geometry and, under the variance of Finsler-Ehresmann form, conformal changes of Finsler metrics are studied. Some existence conditions of this Fins...In this paper, a new Ricci flow is canonically introduced in Finsler Geometry and, under the variance of Finsler-Ehresmann form, conformal changes of Finsler metrics are studied. Some existence conditions of this Finslerian Ricci flow on a compact manifold which preserves the conformal class of the initial metric are obtained as an application.展开更多
文摘In the theory of general relativity, the finding of the Einstein Field Equation happens in a complex mathematical operation, a process we don’t need any more. Through a new theory in vector analysis, we’ll see that we can calculate the components of the Ricci tensor, Ricci scalar, and Einstein Field Equation directly in an easy way without the need to use general relativity theory hypotheses, principles, and symbols. Formulating the general relativity theory through another theory will make it easier to understand this relativity theory and will help combining it with electromagnetic theory and quantum mechanics easily.
基金supported by National Research Foundation of Korea (Grant No. NRF2015-R1A2A1A-01002459)
文摘We introduce the notion of commuting Ricci tensor for real hypersurfaces in the complex quadric Qm = SOm+2/SOmSO2. It is shown that the commuting Ricci tensor gives that the unit normal vector field N becomes -principal or -isotropic. Then according to each case, we give a complete classification of Hopf real hypersurfaces in Qm = SOm+2/SOmSO2 with commuting Ricci tensor.
基金Project supported by the National Natural Science Foundation of China(Nos.10831008,11131007)
文摘t The authors consider the problem of conformally deforming a metric such that the k-curvature defined by an elementary symmetric function of the eigenvalues of the Bakry-Emery Ricci tensor on a compact manifold with boundary to a prescribed function. A consequence of our main result is that there exists a complete metric such that the Monge-Amp^re type equation with respect to its Bakry-Emery Ricci tensor is solvable, provided that the initial Bakry-Emery Ricci tensor belongs to a negative convex cone.
文摘We consider the problem of deforming a metric in its conformal class on a closed manifold, such that the k-curvature defined by the Bakry-mery Ricci tensor is a constant. We show its solvability on the manifold, provided that the initial Bakry-mery Ricci tensor belongs to a negative cone. Moveover, the Monge-Ampère type equation with respect to the Bakry-mery Ricci tensor is also considered.
基金supported by the National Natural Science Foundation of China under the grant numbers 11126073the Fundamental Research Funds for the Central Universities of SCUT under the grant number 2012ZB0017
文摘In this article, we study the steady, shrinking, and expanding Kahler-Ricci solitons with vanishing Bochner-Weyl tensor and prove that, under this condition, the Ricci solitons must have constant holomorphic sectional curvature.
基金supported by National Natural Science Foundation of China(11301191)supported by MOST(MOST107-2115-M-110-007-MY2)
文摘We show that closed shrinking gradient Ricci solitons with positive Ricci curvature and sufficiently pinched Weyl tensor are Einstein. When Weyl tensor vanishes, this has been proved before but our proof here is much simpler.
基金supported by National Research Foundation of Korea (Grant No. NRF2015-R1A2A1A-01002459)
文摘We introduce a new notion of pseudo-anti commuting Ricci tensor for real hypersurfaces in the noncompact complex hyperbolic quadric Q^(m?)= SO_2~0,_m/SO_2SO_m and give a complete classi?cation of these hypersurfaces.
基金the National Natural Science Foundation of China(Grant No.11771099)supported by the Hong Kong Research Grant Council(Grant Nos.PolyU 15302114,15300715,15301716,15300717)supported by the Innovation Program of Shanghai Municipal Education Commission。
文摘We investigate the M-eigenvalues of the Riemann curvature tensor in the higher dimensional conformally flat manifold.The expressions of Meigenvalues and M-eigenvectors are presented in this paper.As a special case,M-eigenvalues of conformal flat Einstein manifold have also been discussed,and the conformal the invariance of M-eigentriple has been found.We also reveal the relationship between M-eigenvalue and sectional curvature of a Riemannian manifold.We prove that the M-eigenvalue can determine the Riemann curvature tensor uniquely.We also give an example to compute the Meigentriple of de Sitter spacetime which is well-known in general relativity.
文摘A short description of structural and virtual Kirichenko tensors that form a complete system of first-order differential-geometrical invariants of an arbitrary almost Hermitian structure is given.A characterization of nearly-Khlerian structures in terms of Kirichenko tensors is also given.
文摘In this paper, a new Ricci flow is canonically introduced in Finsler Geometry and, under the variance of Finsler-Ehresmann form, conformal changes of Finsler metrics are studied. Some existence conditions of this Finslerian Ricci flow on a compact manifold which preserves the conformal class of the initial metric are obtained as an application.