期刊文献+
共找到72篇文章
< 1 2 4 >
每页显示 20 50 100
New Way to Calculate Ricci Tensor and Ricci Scalar
1
作者 Abed El Karim S. Abou Layla 《Journal of High Energy Physics, Gravitation and Cosmology》 2019年第3期850-867,共18页
In the theory of general relativity, the finding of the Einstein Field Equation happens in a complex mathematical operation, a process we don’t need any more. Through a new theory in vector analysis, we’ll see that ... In the theory of general relativity, the finding of the Einstein Field Equation happens in a complex mathematical operation, a process we don’t need any more. Through a new theory in vector analysis, we’ll see that we can calculate the components of the Ricci tensor, Ricci scalar, and Einstein Field Equation directly in an easy way without the need to use general relativity theory hypotheses, principles, and symbols. Formulating the general relativity theory through another theory will make it easier to understand this relativity theory and will help combining it with electromagnetic theory and quantum mechanics easily. 展开更多
关键词 General Relativity ricci tensor ricci SCALAR EINSTEIN Field Equation Stress-Energy tensor Robertson-Walker METRIC SCHWARZSCHILD METRIC
在线阅读 下载PDF
Real hypersurfaces in the complex quadric with commuting Ricci tensor
2
作者 SUH YoungJin HWANG DooHyun 《Science China Mathematics》 SCIE CSCD 2016年第11期2185-2198,共14页
We introduce the notion of commuting Ricci tensor for real hypersurfaces in the complex quadric Qm = SOm+2/SOmSO2. It is shown that the commuting Ricci tensor gives that the unit normal vector field N becomes -princ... We introduce the notion of commuting Ricci tensor for real hypersurfaces in the complex quadric Qm = SOm+2/SOmSO2. It is shown that the commuting Ricci tensor gives that the unit normal vector field N becomes -principal or -isotropic. Then according to each case, we give a complete classification of Hopf real hypersurfaces in Qm = SOm+2/SOmSO2 with commuting Ricci tensor. 展开更多
关键词 commuting ricci tensor -isotropic -principal Kahler structure complex conjugation complex quadric
原文传递
Prescribing Curvature Problems on the Bakry-Emery Ricci Tensor of a Compact Manifold with Boundary
3
作者 Weimin SHENG Lixia YUAN 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2014年第1期139-160,共22页
t The authors consider the problem of conformally deforming a metric such that the k-curvature defined by an elementary symmetric function of the eigenvalues of the Bakry-Emery Ricci tensor on a compact manifold with ... t The authors consider the problem of conformally deforming a metric such that the k-curvature defined by an elementary symmetric function of the eigenvalues of the Bakry-Emery Ricci tensor on a compact manifold with boundary to a prescribed function. A consequence of our main result is that there exists a complete metric such that the Monge-Amp^re type equation with respect to its Bakry-Emery Ricci tensor is solvable, provided that the initial Bakry-Emery Ricci tensor belongs to a negative convex cone. 展开更多
关键词 k-Curvature Bakry-Emery ricci tensor Complete metric Dirichletproblem
原文传递
Prescribing curvature problem of Bakry-mery Ricci tensor
4
作者 YUAN LiXia 《Science China Mathematics》 SCIE 2013年第9期1935-1944,共10页
We consider the problem of deforming a metric in its conformal class on a closed manifold, such that the k-curvature defined by the Bakry-mery Ricci tensor is a constant. We show its solvability on the manifold, provi... We consider the problem of deforming a metric in its conformal class on a closed manifold, such that the k-curvature defined by the Bakry-mery Ricci tensor is a constant. We show its solvability on the manifold, provided that the initial Bakry-mery Ricci tensor belongs to a negative cone. Moveover, the Monge-Ampère type equation with respect to the Bakry-mery Ricci tensor is also considered. 展开更多
关键词 Bakry-émery ricci tensor k-curvature
原文传递
ON THE KHLER-RICCI SOLITONS WITH VANISHING BOCHNER-WEYL TENSOR 被引量:3
5
作者 苏延辉 张坤 《Acta Mathematica Scientia》 SCIE CSCD 2012年第3期1239-1244,共6页
In this article, we study the steady, shrinking, and expanding Kahler-Ricci solitons with vanishing Bochner-Weyl tensor and prove that, under this condition, the Ricci solitons must have constant holomorphic sectional... In this article, we study the steady, shrinking, and expanding Kahler-Ricci solitons with vanishing Bochner-Weyl tensor and prove that, under this condition, the Ricci solitons must have constant holomorphic sectional curvature. 展开更多
关键词 ricci flow Kahler ricci soliton Bochner-Weyl tensor
在线阅读 下载PDF
ON SHRINKING GRADIENT RICCI SOLITONS WITH POSITIVE RICCI CURVATURE AND SMALL WEYL TENSOR 被引量:2
6
作者 Zhuhong ZHANG Chih-Wei CHEN 《Acta Mathematica Scientia》 SCIE CSCD 2019年第5期1235-1239,共5页
We show that closed shrinking gradient Ricci solitons with positive Ricci curvature and sufficiently pinched Weyl tensor are Einstein. When Weyl tensor vanishes, this has been proved before but our proof here is much ... We show that closed shrinking gradient Ricci solitons with positive Ricci curvature and sufficiently pinched Weyl tensor are Einstein. When Weyl tensor vanishes, this has been proved before but our proof here is much simpler. 展开更多
关键词 SHRINKING GRADIENT ricci SOLITONS POSITIVE ricci curvature pinched WEYL tensor
在线阅读 下载PDF
Pseudo-anti commuting Ricci tensor for real hypersurfaces in the complex hyperbolic quadric
7
作者 Young Jin Suh 《Science China Mathematics》 SCIE CSCD 2019年第4期679-698,共20页
We introduce a new notion of pseudo-anti commuting Ricci tensor for real hypersurfaces in the noncompact complex hyperbolic quadric Q^(m?)= SO_2~0,_m/SO_2SO_m and give a complete classi?cation of these hypersurfaces.
关键词 pseudo-anti COMMUTING ricci tensor pseudo-Einstein A-isotropic A-principal COMPLEX conjugation COMPLEX HYPERBOLIC QUADRIC
原文传递
M-Eigenvalues of the Riemann Curvature Tensor of Conformally Flat Manifolds 被引量:1
8
作者 Yun Miao Liqun Qi Yimin Wei 《Communications in Mathematical Research》 CSCD 2020年第3期336-353,共18页
We investigate the M-eigenvalues of the Riemann curvature tensor in the higher dimensional conformally flat manifold.The expressions of Meigenvalues and M-eigenvectors are presented in this paper.As a special case,M-e... We investigate the M-eigenvalues of the Riemann curvature tensor in the higher dimensional conformally flat manifold.The expressions of Meigenvalues and M-eigenvectors are presented in this paper.As a special case,M-eigenvalues of conformal flat Einstein manifold have also been discussed,and the conformal the invariance of M-eigentriple has been found.We also reveal the relationship between M-eigenvalue and sectional curvature of a Riemannian manifold.We prove that the M-eigenvalue can determine the Riemann curvature tensor uniquely.We also give an example to compute the Meigentriple of de Sitter spacetime which is well-known in general relativity. 展开更多
关键词 M-eigenvalue Riemann curvature tensor ricci tensor conformal invariant canonical form
在线阅读 下载PDF
具有两个不同Ricci主曲率的局部共形平坦Riemann流形
9
作者 吴炳烨 《数学年刊(A辑)》 CSCD 北大核心 2011年第1期71-82,共12页
得到了具有常m阶Schouten曲率与两个不同Schouten主曲率(或者等价地,两个不同Ricci主曲率)的完备局部共形平坦Riemann流形的分类结果.作为应用,得到了若干Schouten张量的pinching性质.
关键词 局部共形平坦 ricci张量 SCHOUTEN张量 Schouten主曲率 m阶Schouten曲率
在线阅读 下载PDF
RiCCi曲率平行的黎曼流形的刚性定理
10
作者 廖蔡生 《华东师范大学学报(自然科学版)》 CAS CSCD 北大核心 1999年第1期8-15,共8页
该文研究Ricci曲率平行的黎曼流形,将文[6]、[7]中Einstein流形的一些刚性定理推广到Ricci曲率平行的黎曼流形上。
关键词 ricci曲率 刚性定理 第一特征值 黎曼流形
在线阅读 下载PDF
On Kirichenko Tensors of Nearly-Khlerian Manifolds
11
作者 Mihail B.BANARU 《四川理工学院学报(自然科学版)》 CAS 2012年第4期1-5,共5页
A short description of structural and virtual Kirichenko tensors that form a complete system of first-order differential-geometrical invariants of an arbitrary almost Hermitian structure is given.A characterization of... A short description of structural and virtual Kirichenko tensors that form a complete system of first-order differential-geometrical invariants of an arbitrary almost Hermitian structure is given.A characterization of nearly-Khlerian structures in terms of Kirichenko tensors is also given. 展开更多
关键词 Kirichenko tensors ricci tensor nearly-Khlerian manifold almost Hermitian manifold six-dimensional submanifolds of Cayley algebra
在线阅读 下载PDF
伪Ricci对称流形的几个调和性质
12
作者 聂智 《西南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2003年第6期846-849,共4页
利用Riemann曲率与Weyl共形曲率研究了特殊的Riemann流形———伪Ricci对称流形.同时得到了流形与子流形成为Ricci平坦空间的充要条件.
关键词 ricci对称流形 调和曲率张量 ricci平坦空间 拟Einstein流形 Riemann曲率 Weyl共形曲率
在线阅读 下载PDF
关于Ricci对称的黎曼流形的孤立性
13
作者 蔡开仁 《绍兴文理学院学报(自然科学版)》 2003年第7期10-12,共3页
使用P.Li的Sobolev不等式和Lp估计方法,研究Ricci对称的黎曼流形的量子化现象.证明了对于紧致的具有正数量曲率的Ricci对称的黎曼流形M,存在一个常数A,当M的保圆曲率张量的La/2模小于A时,M为常曲率空间.
关键词 黎曼流形 孤立性 ricci对称 量子化 SOBOLEV不等式 Lp估计方法 保圆曲率张量 微分几何
在线阅读 下载PDF
复双平面格拉斯曼中实超曲面的*-Ricci张量
14
作者 廖春艳 陈小民 《南昌大学学报(理科版)》 CAS 北大核心 2019年第4期317-325,330,共10页
主要考虑在复双曲双面格拉斯曼SU2,m/S(U2U m),m≥2中的实超曲面的复曲率张量中引入*-Ricci张量。我们首先证明了SU2,m/S(U2U m)的Hopf超曲面上不存在*-Einstein度量。作为*-Einstein度量的一个推广,我们引入了*-Ricci孤立子,并证明了... 主要考虑在复双曲双面格拉斯曼SU2,m/S(U2U m),m≥2中的实超曲面的复曲率张量中引入*-Ricci张量。我们首先证明了SU2,m/S(U2U m)的Hopf超曲面上不存在*-Einstein度量。作为*-Einstein度量的一个推广,我们引入了*-Ricci孤立子,并证明了一个具有*-Ricci孤立子的实超曲面的位势场是Reeb矢量场,是SU2,m/S(U2U m)中全测地子流行SU2,m-1/S(U2U m-1)管状领域的一部分或者是一个无穷远处的中心是奇异的极限球面。最后,我们研究了一个具有伪反交换*-Ricci张量的Hopf超曲面。 展开更多
关键词 *-ricci张量 伪反交换*-ricci张量 *-Einstein Hopf超曲面 复双平面格拉斯曼 *-ricci孤立子
在线阅读 下载PDF
Ricci孤立子的势函数
15
作者 李金楠 高翔 《中国海洋大学学报(自然科学版)》 CAS CSCD 北大核心 2022年第3期148-152,共5页
Bakry-Emery Ricci张量定义为Ric_(f)=Ric+Hessf。特殊地,当光滑实值函数f为常数时,Bakry-Emery Ricci张量为Ricci张量,方程Ric_(f)=ρg(ρ为常数)实际为梯度Ricci孤立子方程。本文应用Bakry-Emery Ricci张量与Riccati不等式来研究梯度R... Bakry-Emery Ricci张量定义为Ric_(f)=Ric+Hessf。特殊地,当光滑实值函数f为常数时,Bakry-Emery Ricci张量为Ricci张量,方程Ric_(f)=ρg(ρ为常数)实际为梯度Ricci孤立子方程。本文应用Bakry-Emery Ricci张量与Riccati不等式来研究梯度Ricci孤立子的势函数,分别给出扩张、稳定及收缩梯度Ricci孤立子势函数的下界估计。 展开更多
关键词 Bakry-Emery张量 ricci孤立子 势函数
在线阅读 下载PDF
完备非紧梯度扩张Ricci孤立子的刚性 被引量:1
16
作者 陈佳蕊 刘建成 《吉林大学学报(理学版)》 CAS 北大核心 2019年第6期1403-1406,共4页
利用已有梯度Ricci孤立子的刚性定理,讨论完备非紧梯度扩张Ricci孤立子,在Ricci曲率非负、径向曲率为0及Weyl张量的四阶散度非负的条件下,得到了其刚性的结果.
关键词 梯度扩张ricci孤立子 刚性 径向曲率 Weyl张量
在线阅读 下载PDF
关于广义(α,β)-度量的若干Ricci曲率性质
17
作者 程新跃 吴莎莎 黄勤荣 《数学进展》 CSCD 北大核心 2020年第1期83-94,共12页
本文研究了广义(α,β)-度量的Ricci曲率和Ricci曲率张量.首先,在一定条件下,本文给出了强Einstein广义(α,β)-度量的一个等价刻画.进一步,得到了广义(α,β)-度量是Ricci-齐次Finsler度量的一个充分必要条件.
关键词 FINSLER度量 广义(α β)-度量 ricci曲率 ricci曲率张量 EINSTEIN度量 ricci-齐次度量
原文传递
Finslerian Ricci Deformation and Conformal Metrics
18
作者 Gilbert Nibaruta Serge Degla Léonard Todjihounde 《Journal of Applied Mathematics and Physics》 2018年第7期1522-1536,共15页
In this paper, a new Ricci flow is canonically introduced in Finsler Geometry and, under the variance of Finsler-Ehresmann form, conformal changes of Finsler metrics are studied. Some existence conditions of this Fins... In this paper, a new Ricci flow is canonically introduced in Finsler Geometry and, under the variance of Finsler-Ehresmann form, conformal changes of Finsler metrics are studied. Some existence conditions of this Finslerian Ricci flow on a compact manifold which preserves the conformal class of the initial metric are obtained as an application. 展开更多
关键词 Ehresmann CONNECTION ricci Flow Trace-Free ricci tensor CONFORMAL Change of Finsler-Ehresmann Form
在线阅读 下载PDF
关于Bochner张量具有消灭条件的梯度收缩Kähler-Ricci孤立子
19
作者 沈东 刘建成 《华东师范大学学报(自然科学版)》 CAS CSCD 北大核心 2022年第4期26-30,共5页
研究完备梯度收缩Kähler-Ricci孤立子,在Bochner张量的4阶散度等于零的条件下(即div^(4)(W)=▽_(k)▽_(j)▽_(i)▽_(l)W_(ijkl)=0),得到了其分类结果.
关键词 Kähler-ricci孤立子 Bochner张量 调和Bochner张量
在线阅读 下载PDF
四维完备梯度近Ricci孤立子的局部特征
20
作者 路娟玲 刘建成 《吉林大学学报(理学版)》 CAS 北大核心 2023年第3期553-556,共4页
用几何分析的方法,并结合一些重要不等式,研究满足特定条件(与Weyl张量的反自对偶或自对偶部分相关)的四维完备梯度近Ricci孤立子的局部特征,证得该孤立子在局部上是具有三维常截面曲率纤维的卷积结构或具有三维Einstein纤维的卷积结构.
关键词 梯度近ricci孤立子 Weyl张量 卷积
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部