The propagation characteristics of nonlinear ion–acoustic(IA) solitary waves(SWs) are studied in thermal electron–positron–ion plasma considering the effect of relativistic positron beam. Starting from a set of...The propagation characteristics of nonlinear ion–acoustic(IA) solitary waves(SWs) are studied in thermal electron–positron–ion plasma considering the effect of relativistic positron beam. Starting from a set of fluid equations and using the reductive perturbation technique, we derive a Korteweg–de Vries(KdV) equation which governs the evolution of weakly nonlinear IA SWs in relativistic beam driven plasmas. The properties of the IA soliton are studied, and it is shown that the presence of relativistic positron beam significantly modifies the characteristics of IA solitons.展开更多
Ion-acoustic solitary (IAS) waves in electron-positron-ion (e-p-i) plasma have been of interest to many researchers probably due to their relevance in understanding the Universe. However, the study of non-linear ion-a...Ion-acoustic solitary (IAS) waves in electron-positron-ion (e-p-i) plasma have been of interest to many researchers probably due to their relevance in understanding the Universe. However, the study of non-linear ion-acoustic waves in e-p-i plasma with non-thermal electrons has not been adequately studied. A theoretical investigation on non-linear IAS waves in e-p-i plasma comprising of warm inertial adiabatic fluid ions and electrons that are kappa distributed, and Boltzman distributed positron is presented here using the Sagdeev potential technique. It was found that existence domains of finite amplitude IAS waves were confined within the limits of minimum and maximum Mach numbers with varying k values. For lower values of k, the amplitude of the solitary electrostatic potential structures increased as the width decreased, while for high values, the potential amplitude decreased as the width of the solitary structure increased.展开更多
The nonlinear propagation of ion-acoustic(IA) shock waves(SHWs) in a nonextensive multi-ion plasma system(consisting of inertial positive light ions as well as negative heavy ions, noninertial nonextensive electrons a...The nonlinear propagation of ion-acoustic(IA) shock waves(SHWs) in a nonextensive multi-ion plasma system(consisting of inertial positive light ions as well as negative heavy ions, noninertial nonextensive electrons and positrons) has been studied. The reductive perturbation technique has been employed to derive the Burgers equation.The basic properties(polarity, amplitude, width, etc.) of the IA SHWs are found to be significantly modified by the effects of nonextensivity of electrons and positrons, ion kinematic viscosity, temperature ratio of electrons and positrons, etc.It has been observed that SHWs with positive and negative potential are formed depending on the plasma parameters.The findings of our results obtained from this theoretical investigation may be useful in understanding the characteristics of IA SHWs both in laboratory and space plasmas.展开更多
In the presence of an applied static and uniform magnetic field, a cylindrical Kadomtsev-Petviashivili equation is derived for a relativistic electromagnetic solitary wave propagating in collisionless plasma consistin...In the presence of an applied static and uniform magnetic field, a cylindrical Kadomtsev-Petviashivili equation is derived for a relativistic electromagnetic solitary wave propagating in collisionless plasma consisting electrons, positrons, and ions in the case of weak relativistic limit. This equation is solved in a stationary frame to obtain explicit expression for the velocity, amplitude and width of solitons. The amplitude of the solitary wave has a maximum value at a critical αc of the ratio of the ion equilibrium density to the electron one, and it increases as the applied magnetic field becomes larger.展开更多
基金support from UGC-SAP (DRS, Phase Ⅲ) with Sanction order No. F.510/3/DRS-Ⅲ/2015(SAPI)UGC-MRP with F. No. 43-539/2014 (SR)FD Diary No.3668
文摘The propagation characteristics of nonlinear ion–acoustic(IA) solitary waves(SWs) are studied in thermal electron–positron–ion plasma considering the effect of relativistic positron beam. Starting from a set of fluid equations and using the reductive perturbation technique, we derive a Korteweg–de Vries(KdV) equation which governs the evolution of weakly nonlinear IA SWs in relativistic beam driven plasmas. The properties of the IA soliton are studied, and it is shown that the presence of relativistic positron beam significantly modifies the characteristics of IA solitons.
文摘Ion-acoustic solitary (IAS) waves in electron-positron-ion (e-p-i) plasma have been of interest to many researchers probably due to their relevance in understanding the Universe. However, the study of non-linear ion-acoustic waves in e-p-i plasma with non-thermal electrons has not been adequately studied. A theoretical investigation on non-linear IAS waves in e-p-i plasma comprising of warm inertial adiabatic fluid ions and electrons that are kappa distributed, and Boltzman distributed positron is presented here using the Sagdeev potential technique. It was found that existence domains of finite amplitude IAS waves were confined within the limits of minimum and maximum Mach numbers with varying k values. For lower values of k, the amplitude of the solitary electrostatic potential structures increased as the width decreased, while for high values, the potential amplitude decreased as the width of the solitary structure increased.
文摘The nonlinear propagation of ion-acoustic(IA) shock waves(SHWs) in a nonextensive multi-ion plasma system(consisting of inertial positive light ions as well as negative heavy ions, noninertial nonextensive electrons and positrons) has been studied. The reductive perturbation technique has been employed to derive the Burgers equation.The basic properties(polarity, amplitude, width, etc.) of the IA SHWs are found to be significantly modified by the effects of nonextensivity of electrons and positrons, ion kinematic viscosity, temperature ratio of electrons and positrons, etc.It has been observed that SHWs with positive and negative potential are formed depending on the plasma parameters.The findings of our results obtained from this theoretical investigation may be useful in understanding the characteristics of IA SHWs both in laboratory and space plasmas.
文摘In the presence of an applied static and uniform magnetic field, a cylindrical Kadomtsev-Petviashivili equation is derived for a relativistic electromagnetic solitary wave propagating in collisionless plasma consisting electrons, positrons, and ions in the case of weak relativistic limit. This equation is solved in a stationary frame to obtain explicit expression for the velocity, amplitude and width of solitons. The amplitude of the solitary wave has a maximum value at a critical αc of the ratio of the ion equilibrium density to the electron one, and it increases as the applied magnetic field becomes larger.