Pure near-infrared(NIR)phosphorescent materials with emission peak larger than 700 nm are of great significance for the development of optoelectronics and biomedicine.We have designed and synthesized two new B-embedde...Pure near-infrared(NIR)phosphorescent materials with emission peak larger than 700 nm are of great significance for the development of optoelectronics and biomedicine.We have designed and synthesized two new B-embedded pure near-infrared(NIR)-emitting iridium complexes(Ir(Bpiq)2acac and Ir(Bpiq)2dpm)with peaks greater than 720 nm.More importantly,they exhibit very narrow phosphorescent emission with full width at half maximum(FWHM)of only about 50 nm(0.12 e V),resulting in a high NIR content(>90%)in their spectrum.In view of better optical property and solubility,the complex Ir(Bpiq)_(2)dpm was used as the emitting layer of a solution-processed OLED device,and achieved good maximum external quantum efficiency(EQE)(2.8%)peaking at 728 nm.This research provides an important strategy for the design of narrowband NIR-emitting phosphorescent iridium complexes and their optoelectronic applications.展开更多
Abundant efforts have been devoted to improving the efficiency of organic light-emitting diodes(OLEDs),however,approaches to control the device efficiency roll-off are still extremely limited,especially in nondoped bl...Abundant efforts have been devoted to improving the efficiency of organic light-emitting diodes(OLEDs),however,approaches to control the device efficiency roll-off are still extremely limited,especially in nondoped blue OLEDs.In this work,three blue emitters(TAT,TAMT and TAMT-CN)with"hot exciton"properties are designed and synthesized based on[1,2,4]triazolo[1,5-a]pyridine(TP)as a regulating unit as well as anthracene-triphenylamine(An-TPA)as the chromophore.By adjusting the linkage mode and modifying the TP unit,the excited state properties,carrier transfer abilities,horizontal orientation,and device efficiency roll-off were precisely controlled.Among these materials,emitters that directly connect the fused TP unit exhibit balanced charge-transporting ability,higher photoluminescent quantum yield and improved horizontal orientation,resulting in better electroluminescence(EL)performance in non-doped blue OLEDs.As a result,non-doped blue OLEDs exhibit excellent performance with external quantum efficiencies of over 6%,brightness of over 30,000 cd/m2and EL peaks of around 476 nm.More importantly,the device based on TAMT-CN exhibits an ultra-low efficiency roll-off of 2.97%at a high brightness of10,000 cd/m2.The accessible molecular unit and feasible design strategy in this work are of great significance for designing highly efficient and ultra-low efficiency roll-off non-doped blue OLEDs.展开更多
基金support from the National Natural Science Foundation of China(Nos.22171109,52373195 and 22001097)Natural Science Foundation of Jiangsu Province of China(No.BK20201003)+1 种基金the Postdoctoral Research Foundation of China(No.2021M701657)the Opening Project of Key Laboratory of Optoelectronic Chemical Materials and Devices,Ministry of Education,Jianghan University(No.JDGD-202301)。
文摘Pure near-infrared(NIR)phosphorescent materials with emission peak larger than 700 nm are of great significance for the development of optoelectronics and biomedicine.We have designed and synthesized two new B-embedded pure near-infrared(NIR)-emitting iridium complexes(Ir(Bpiq)2acac and Ir(Bpiq)2dpm)with peaks greater than 720 nm.More importantly,they exhibit very narrow phosphorescent emission with full width at half maximum(FWHM)of only about 50 nm(0.12 e V),resulting in a high NIR content(>90%)in their spectrum.In view of better optical property and solubility,the complex Ir(Bpiq)_(2)dpm was used as the emitting layer of a solution-processed OLED device,and achieved good maximum external quantum efficiency(EQE)(2.8%)peaking at 728 nm.This research provides an important strategy for the design of narrowband NIR-emitting phosphorescent iridium complexes and their optoelectronic applications.
基金the financial support from the National Natural Science Foundation of China(Nos.52273187 and 51973107)the Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme 2019(No.GDUPS2019)。
文摘Abundant efforts have been devoted to improving the efficiency of organic light-emitting diodes(OLEDs),however,approaches to control the device efficiency roll-off are still extremely limited,especially in nondoped blue OLEDs.In this work,three blue emitters(TAT,TAMT and TAMT-CN)with"hot exciton"properties are designed and synthesized based on[1,2,4]triazolo[1,5-a]pyridine(TP)as a regulating unit as well as anthracene-triphenylamine(An-TPA)as the chromophore.By adjusting the linkage mode and modifying the TP unit,the excited state properties,carrier transfer abilities,horizontal orientation,and device efficiency roll-off were precisely controlled.Among these materials,emitters that directly connect the fused TP unit exhibit balanced charge-transporting ability,higher photoluminescent quantum yield and improved horizontal orientation,resulting in better electroluminescence(EL)performance in non-doped blue OLEDs.As a result,non-doped blue OLEDs exhibit excellent performance with external quantum efficiencies of over 6%,brightness of over 30,000 cd/m2and EL peaks of around 476 nm.More importantly,the device based on TAMT-CN exhibits an ultra-low efficiency roll-off of 2.97%at a high brightness of10,000 cd/m2.The accessible molecular unit and feasible design strategy in this work are of great significance for designing highly efficient and ultra-low efficiency roll-off non-doped blue OLEDs.