We show the results of first-principles calculations of structural,phonon,elastic,thermal and electronic properties of the Mg-X inter-metallics in their respective ground state phase and meta-stable phases at equilibr...We show the results of first-principles calculations of structural,phonon,elastic,thermal and electronic properties of the Mg-X inter-metallics in their respective ground state phase and meta-stable phases at equilibrium geometry and the studied pressure range.Phonon dispersion spectra for these compounds were investigated by using the linear response technique.The phonon spectra do not show any abnormality in their respective ground state phase.The respective ground states phases of the studied system remain stable within the studied pressure range.Electronic and thermodynamic properties were derived by analysis of the electronic structures and quasi-harmonic approximation.The mixed bonding character of the Mg-X intermetallics is revealed by Mg-X bonds,and it leads the metallic nature.Most of the contribution originated from X ions d like states at Fermi level compared to that of Mg ion in these intermetallics.In this work,we also predicted the melting temperature of these intermetallics and evaluated the Debye temperature by using elastic constants.展开更多
Shaped Mg alloy foams with closed-cell structure are highly interested for a great potential to be utilized in the fields where weight reduction is urgently required.A powder metallurgical method,namely gas release re...Shaped Mg alloy foams with closed-cell structure are highly interested for a great potential to be utilized in the fields where weight reduction is urgently required.A powder metallurgical method,namely gas release reaction powder metallurgy route to fabricate Mg-X(X=Al,Zn or Cu)alloy foams,was summarized.The principles on shaped Mg-X foams fabrication via the route were proposed.In addition,the effects of alloying elements,sintering treatment and foaming temperatures on fabrication of shaped Mg-X alloy foams were investigated experimentally.The results show that the key to ensure a successful foaming of Mg-X alloy foams is to add alloying metals alloyed with Mg to form lower melting(<600℃)intermetallic compounds by the initial sintering treatment.The foaming mechanism of Mg-X alloy foams also has been clarified,that is,the low-melting-point Mg-based intermetallic compounds melt first,and then reactions between the melt and CaCO_(3),a foaming agent,release CO gas to make the precursor foamed and finally shaped Mg-X alloy foam with a promising cellular structure is prepared.This route has been verified by successful fabrication on shaped Mg-Al,Mg-Zn and Mg-Cu foams with cellular structure.展开更多
借助扫描电镜、X- ray及吸氢性能测试装置研究了镁含量对机械合金化制备的 Mm Ni5- x ( Co Al Mn) x/Mg纳米晶复合储氢材料的性能的影响。结果表明 ,随着镁含量的增加 ,合金的活化性能表现出差 -好 -差的变化趋势。当镁含量达到50 wt%...借助扫描电镜、X- ray及吸氢性能测试装置研究了镁含量对机械合金化制备的 Mm Ni5- x ( Co Al Mn) x/Mg纳米晶复合储氢材料的性能的影响。结果表明 ,随着镁含量的增加 ,合金的活化性能表现出差 -好 -差的变化趋势。当镁含量达到50 wt%时 ,材料无法被活化。镁含量对吸氢量也有影响 ,具体表现为 ,随着镁含量的增加 ,材料的吸氢量增加。展开更多
基金The present work was financially supported by a Grant-Aid for Science and Engineering Research Board(Grant No.SERB/F/922/2014-15),Department of Science&Technology,Government of India.
文摘We show the results of first-principles calculations of structural,phonon,elastic,thermal and electronic properties of the Mg-X inter-metallics in their respective ground state phase and meta-stable phases at equilibrium geometry and the studied pressure range.Phonon dispersion spectra for these compounds were investigated by using the linear response technique.The phonon spectra do not show any abnormality in their respective ground state phase.The respective ground states phases of the studied system remain stable within the studied pressure range.Electronic and thermodynamic properties were derived by analysis of the electronic structures and quasi-harmonic approximation.The mixed bonding character of the Mg-X intermetallics is revealed by Mg-X bonds,and it leads the metallic nature.Most of the contribution originated from X ions d like states at Fermi level compared to that of Mg ion in these intermetallics.In this work,we also predicted the melting temperature of these intermetallics and evaluated the Debye temperature by using elastic constants.
基金supported by National Natural Science Foundation of China(No.51971017)Science Funds for Creative Research Groups of China(51921001)+2 种基金Program for Changjiang Scholars and Innovative Research Team in University of China(IRT_14R05)Projects of SKLAMM-USTB(2018Z-19)the financial support from the Fundamental Research Funds for the Central Universities of China(No.FRF-TP-18-004C1).
文摘Shaped Mg alloy foams with closed-cell structure are highly interested for a great potential to be utilized in the fields where weight reduction is urgently required.A powder metallurgical method,namely gas release reaction powder metallurgy route to fabricate Mg-X(X=Al,Zn or Cu)alloy foams,was summarized.The principles on shaped Mg-X foams fabrication via the route were proposed.In addition,the effects of alloying elements,sintering treatment and foaming temperatures on fabrication of shaped Mg-X alloy foams were investigated experimentally.The results show that the key to ensure a successful foaming of Mg-X alloy foams is to add alloying metals alloyed with Mg to form lower melting(<600℃)intermetallic compounds by the initial sintering treatment.The foaming mechanism of Mg-X alloy foams also has been clarified,that is,the low-melting-point Mg-based intermetallic compounds melt first,and then reactions between the melt and CaCO_(3),a foaming agent,release CO gas to make the precursor foamed and finally shaped Mg-X alloy foam with a promising cellular structure is prepared.This route has been verified by successful fabrication on shaped Mg-Al,Mg-Zn and Mg-Cu foams with cellular structure.
文摘借助扫描电镜、X- ray及吸氢性能测试装置研究了镁含量对机械合金化制备的 Mm Ni5- x ( Co Al Mn) x/Mg纳米晶复合储氢材料的性能的影响。结果表明 ,随着镁含量的增加 ,合金的活化性能表现出差 -好 -差的变化趋势。当镁含量达到50 wt%时 ,材料无法被活化。镁含量对吸氢量也有影响 ,具体表现为 ,随着镁含量的增加 ,材料的吸氢量增加。