期刊文献+
共找到11,654篇文章
< 1 2 250 >
每页显示 20 50 100
Multimodal MRI Enhancement Combined with Diffusion-Weighted Imaging for the Differential Diagnosis of Non-Lactating Mastitis and Breast Cancer
1
作者 Yongxiang Wei 《Journal of Clinical and Nursing Research》 2025年第6期154-160,共7页
Objective:To explore the value of multimodal MRI enhancement scanning and diffusion-weighted imaging in differentiating non-puerperal mastitis(NPM)and breast cancer.Methods:From September 2022 to September 2024,56 pat... Objective:To explore the value of multimodal MRI enhancement scanning and diffusion-weighted imaging in differentiating non-puerperal mastitis(NPM)and breast cancer.Methods:From September 2022 to September 2024,56 patients with breast diseases were selected as samples and grouped according to disease type.Twenty-eight patients with breast cancer were included in Group A,and 28 patients with NPM were included in Group B.All patients underwent multimodal MRI enhancement scanning and diffusion-weighted imaging.The MRI results,time-signal intensity curves,ADC values,lesion intensity,and imaging signs were compared between the two groups.Results:There were no significant differences in enhancement characteristics,lymph node enlargement,and margins between Group A and Group B(P>0.05).The proportion of outflow curves in Group A was higher than that in Group B(P<0.05).The ADC value in Group A was lower than that in Group B,and the lesion intensity was higher than that in Group B(P<0.05).There were significant differences in imaging signs,such as abscess or sinus,ascending time-signal curve,and mammary duct dilation between Group A and Group B(P<0.05).Conclusion:Multimodal MRI enhancement scanning and diffusion-weighted imaging techniques can be used to diagnose breast diseases.Comprehensive analysis of time-signal intensity curves,lesion intensity,imaging signs,and ADC values can differentiate between NPM and breast cancer. 展开更多
关键词 Breast cancer NPM mri Enhanced imaging Diffusion-weighted imaging
暂未订购
MS-WTUNet面向心脏MRI分割的多尺度小波变换网络
2
作者 黄佳敏 张小波 《现代信息科技》 2026年第1期52-57,共6页
心脏MRI图像的精准分割对心血管疾病诊疗至关重要,但由于心脏结构复杂、边界模糊以及组织对比度较低的问题,使得传统的U-Net网络实现准确分割仍面临挑战。文章提出一种多尺度小波变换网络MS-WTUNet,该网络以U-Net为骨架,在编码与解码各... 心脏MRI图像的精准分割对心血管疾病诊疗至关重要,但由于心脏结构复杂、边界模糊以及组织对比度较低的问题,使得传统的U-Net网络实现准确分割仍面临挑战。文章提出一种多尺度小波变换网络MS-WTUNet,该网络以U-Net为骨架,在编码与解码各层嵌入了与注意力相结合的小波块,在频域中强化纹理与边缘信息,有效提升了模型对复杂边界的表征能力。此外,模型辅以跨层多尺度特征融合与分层深度监督损失,进一步优化了模型从局部细节到全局语义的学习过程。在公开ACDC数据集上的实验表明,MS-WTUNet能够将心肌等边界模糊结构的分割精度提升至91.70%,为心脏MRI图像的自动分割提供了一种性能优异的解决方案。 展开更多
关键词 医学图像分割 U-Net 小波变换 mri图像
在线阅读 下载PDF
基于注意力增强与边缘感知的脑肿瘤MRI跨模态生成方法
3
作者 李好 杨智慧 李丰森 《中国医学物理学杂志》 2026年第1期65-75,共11页
目的:规避脑肿瘤MRI成像过程中存在的时间成本高、伪影多和模态获取不全等问题,研究一种高质量的跨模态脑肿瘤MRI图像生成方法。方法:提出一种融合注意力机制与边缘感知的配准生成对抗网络(AE-RegGAN),对T1模态到T2模态图像的跨模态合成... 目的:规避脑肿瘤MRI成像过程中存在的时间成本高、伪影多和模态获取不全等问题,研究一种高质量的跨模态脑肿瘤MRI图像生成方法。方法:提出一种融合注意力机制与边缘感知的配准生成对抗网络(AE-RegGAN),对T1模态到T2模态图像的跨模态合成,在生成器中引入CoordAttention模块以增强关键区域感知,并结合Sobel边缘检测以强化肿瘤边界表达;在判别器中加入梯度惩罚正则化以提升训练稳定性并缓解模式崩溃问题。结果:在对5760例脑肿瘤MRI数据训练、768例测试中,AE-RegGAN相较于原始RegGAN在局部肿瘤区域的峰值信噪比(PSNR)提升0.51 dB,结构相似性指数(SSIM)提升0.029;在全局图像上PSNR提升0.900 dB,SSIM提升0.032。全局图像配对t检验结果显示平均绝对误差(P=0.0264)、PSNR(P<0.0001)、SSIM(P<0.0001)指标差异均有统计学意义。消融实验进一步验证了注意力与边缘感知模块的有效性。结论:AE-RegGAN在多模态脑部MRI图像合成中表现出更优的结构保持能力与病灶敏感性,为辅助诊断提供了稳定、可信的图像补全方案。 展开更多
关键词 生成对抗网络 脑肿瘤mri图像生成 注意力机制 边缘感知 梯度正则化
暂未订购
基于Mamba-UNet架构的3D MRI脑肿瘤分割方法
4
作者 张野 牛大田 《计算机应用研究》 北大核心 2026年第1期305-312,共8页
多模态MRI脑肿瘤影像的精准分割对脑癌临床诊疗及预后评估至关重要。针对卷积神经网络在捕获全局上下文信息和建立长远程依赖关系方面存在的局限性,提出了基于Mamba与U-Net融合架构的PhC-ToMamba分割模型。模型在瓶颈层嵌入了ToM模块旨... 多模态MRI脑肿瘤影像的精准分割对脑癌临床诊疗及预后评估至关重要。针对卷积神经网络在捕获全局上下文信息和建立长远程依赖关系方面存在的局限性,提出了基于Mamba与U-Net融合架构的PhC-ToMamba分割模型。模型在瓶颈层嵌入了ToM模块旨在有效建模高维特征的全局信息,通过从三个方向计算特征依赖关系并交互,提取更适用于三维图像的全局特征信息;此外,为进一步提升全局特征的提取能力,提出了一种新的多面体卷积(PhConv),并将其嵌入至编码器中,显著扩大了感受野,并提升对重点目标区域的特征提取能力,有效解决了当前主流脑肿瘤图像分割模型对全局信息感知的局限性问题,增强了对关键区域的关注度。在BraTS 2021和MSD Task01_BrainTumor数据集上进行了广泛的实验。实验结果显示,PhC-ToMamba在整个肿瘤、肿瘤核心和增强肿瘤分割任务中的Dice系数分别达到了95.05%/90.46%、94.53%/89.91%和90.74%/75.91%。与其他先进方法相比,PhC-ToMamba在分割精度和参数效率方面展现了优越性,为脑肿瘤分割任务提供稳健的解决方案,从而提高了诊断准确性。 展开更多
关键词 深度学习 mri脑肿瘤分割 多面体卷积 三维U-Net Mamba
在线阅读 下载PDF
A Hybrid Deep Learning Multi-Class Classification Model for Alzheimer’s Disease Using Enhanced MRI Images
5
作者 Ghadah Naif Alwakid 《Computers, Materials & Continua》 2026年第1期797-821,共25页
Alzheimer’s Disease(AD)is a progressive neurodegenerative disorder that significantly affects cognitive function,making early and accurate diagnosis essential.Traditional Deep Learning(DL)-based approaches often stru... Alzheimer’s Disease(AD)is a progressive neurodegenerative disorder that significantly affects cognitive function,making early and accurate diagnosis essential.Traditional Deep Learning(DL)-based approaches often struggle with low-contrast MRI images,class imbalance,and suboptimal feature extraction.This paper develops a Hybrid DL system that unites MobileNetV2 with adaptive classification methods to boost Alzheimer’s diagnosis by processing MRI scans.Image enhancement is done using Contrast-Limited Adaptive Histogram Equalization(CLAHE)and Enhanced Super-Resolution Generative Adversarial Networks(ESRGAN).A classification robustness enhancement system integrates class weighting techniques and a Matthews Correlation Coefficient(MCC)-based evaluation method into the design.The trained and validated model gives a 98.88%accuracy rate and 0.9614 MCC score.We also performed a 10-fold cross-validation experiment with an average accuracy of 96.52%(±1.51),a loss of 0.1671,and an MCC score of 0.9429 across folds.The proposed framework outperforms the state-of-the-art models with a 98%weighted F1-score while decreasing misdiagnosis results for every AD stage.The model demonstrates apparent separation abilities between AD progression stages according to the results of the confusion matrix analysis.These results validate the effectiveness of hybrid DL models with adaptive preprocessing for early and reliable Alzheimer’s diagnosis,contributing to improved computer-aided diagnosis(CAD)systems in clinical practice. 展开更多
关键词 Alzheimer’s disease deep learning mri images MobileNetV2 contrast-limited adaptive histogram equalization(CLAHE) enhanced super-resolution generative adversarial networks(ESRGAN) multi-class classification
在线阅读 下载PDF
BOPPPS教学模式在医学影像技术MRI实习教学中的创新实践 被引量:1
6
作者 钟佳利 郝攀 +1 位作者 彭如臣 信瑞强 《卫生职业教育》 2025年第18期67-70,共4页
目的探讨BOPPPS教学模式在医学影像技术MRI实习教学中的实践效果。方法以首都医科大学附属北京潞河医院进行MRI实习的医学影像技术专业学生为研究对象,其中研究组19人采用BOPPPS教学模式,对照组18人采用传统教学模式。比较实习结束后两... 目的探讨BOPPPS教学模式在医学影像技术MRI实习教学中的实践效果。方法以首都医科大学附属北京潞河医院进行MRI实习的医学影像技术专业学生为研究对象,其中研究组19人采用BOPPPS教学模式,对照组18人采用传统教学模式。比较实习结束后两组学生的理论与实践考核成绩、教学满意度。结果研究组的理论与实践考核成绩均优于对照组(P<0.05)。教学满意度结果显示,研究组在课程设计与实习收获方面的满意度评分高于对照组(P<0.05)。结论BOPPPS教学模式有助于提高学生在MRI实习过程中的理论水平与实践操作能力,并提高教学满意度。 展开更多
关键词 BOPPPS教学模式 医学影像技术 磁共振实习教学 教学效果 教学满意度
在线阅读 下载PDF
基于深度学习的复合超分辨率重建算法在膝关节MRI中的临床应用价值
7
作者 王超 谢晓亮 +4 位作者 朱熹 黄文诺 尚松安 叶靖 王志军 《放射学实践》 北大核心 2025年第1期67-72,共6页
目的:探讨临床环境中通过优化扫描参数结合基于深度学习的复合超分辨率重建算法在提升膝关节MRI扫描效率和图像质量的可行性。方法:前瞻性搜集110例行膝关节MRI平扫的患者,先后进行常规(常规组)与复合超分辨率重建算法扫描(复合组),采... 目的:探讨临床环境中通过优化扫描参数结合基于深度学习的复合超分辨率重建算法在提升膝关节MRI扫描效率和图像质量的可行性。方法:前瞻性搜集110例行膝关节MRI平扫的患者,先后进行常规(常规组)与复合超分辨率重建算法扫描(复合组),采用双盲法比较两组主客观图像质量。结果:相较常规组,复合组PD和T1序列的骨髓、软骨、半月板、韧带、肌肉、脂肪、关节液的SNR分别提升89.3%、52.5%、65.3%、73.8%、60.3%、103.9%、58.9%和78.0%、172.9%、78.0%、72.5%、75.4%、63.4%、97.0%。相较常规组,复合组PD和T1序列的软骨-关节液、软骨-骨髓、半月板-关节液、韧带-关节液、骨髓-关节液、脂肪-关节液、肌肉-关节液的CNR分别提升119.5%、83.3%、116.2%、109.2%、109.2%、99.3%、116.8%和61.7%、23.1%、78.7%、32.5%、161.7%、44.9%、39.2%。复合组的峰值信噪比(PSNR)相较常规组显著提高(P<0.05),结构相似度(SSIM)均>0.999。主观图像质量评价中复合组病灶边缘区分度、运动伪影和综合诊断度的主观评分显著高于常规组(P<0.05),两组病灶辨别度的主观评分差异无统计学意义(P>0.05)。结论:合理优化扫描参数并结合基于深度学习的复合超分辨率重建算法可在提升扫描效率的同时显著提高膝关节MRI的图像质量和综合诊断效果。 展开更多
关键词 卷积神经网络 深度学习 膝关节 磁共振成像 超分辨率重建
暂未订购
3.0T MRI单侧髋关节扫描对髋臼损伤的临床诊断价值 被引量:1
8
作者 张龙 吉晓曦 +2 位作者 卫孟佳 王嘉麟 王志鹏 《中南医学科学杂志》 2025年第2期321-323,334,共4页
目的 探讨3.0T磁共振成像(MRI)单侧髋关节扫描对髋臼损伤的临床诊断价值。方法 选取髋关节髋臼损伤患者84例,以手术结果为金标准,所有患者均行3.0T MRI单侧髋关节扫描和双侧髋关节扫描,对扫描图像质量进行评分,比较两种方法的灵敏度、... 目的 探讨3.0T磁共振成像(MRI)单侧髋关节扫描对髋臼损伤的临床诊断价值。方法 选取髋关节髋臼损伤患者84例,以手术结果为金标准,所有患者均行3.0T MRI单侧髋关节扫描和双侧髋关节扫描,对扫描图像质量进行评分,比较两种方法的灵敏度、特异度、准确率。结果 3.0T MRI单侧髋关节扫描的图像质量评分明显高于双侧髋关节扫描(P<0.05)。3.0T MRI单侧髋关节扫描的灵敏度、准确率均高于双侧髋关节扫描(P<0.05)。结论 3.0T MRI单侧髋关节扫描在髋臼损伤诊断中具有高清晰度和灵敏度,可为临床确诊和治疗提供可靠依据,具有较高的临床应用价值。 展开更多
关键词 3.0T mri 单侧髋关节 双侧髋关节 髋臼损伤 影像诊断
暂未订购
民警膝关节骨关节炎超声与MRI检查的对比性研究
9
作者 韩媛 岳松 +1 位作者 刘雯 岳雅洁 《首都食品与医药》 2025年第4期107-109,共3页
目的对比民警膝关节骨关节炎采用超声与MRI检查的效果差异。方法回顾性分析本院自2021年8月-2023年4月收治的民警膝关节骨关节炎疑似患者的临床资料,全部患者均应用了超声以及MRI检查,以MRI为“金标准”,根据筛检结果,统计超声检查的符... 目的对比民警膝关节骨关节炎采用超声与MRI检查的效果差异。方法回顾性分析本院自2021年8月-2023年4月收治的民警膝关节骨关节炎疑似患者的临床资料,全部患者均应用了超声以及MRI检查,以MRI为“金标准”,根据筛检结果,统计超声检查的符合率。结果超声检查与MRI诊断膝关节骨关节炎当中关节软骨变薄、半月板改变、软组织改变、关节腔改变以及关节积液的符合率比较,差异无统计学意义(P>0.05)。超声与MRI相比,用于诊断膝关节骨关节炎当中的关节软骨回声改变、滑膜改变符合率较高,差异有统计学意义(P<0.05)。超声诊断膝关节骨关节炎的灵敏度及特异性均较高,与MRI相比,差异无统计学意义(P>0.05)。kappa检验结果可见,超声与MRI诊断膝关节骨关节炎的一致性较高,kappa统计量为0.737。结论超声与MRI用于诊断及评估膝关节骨关节炎方面均具有较好的效果,各有优势,能够对疾病的病变部位进行更加准确的分析及判断,为之后临床治疗方案的制定奠定了可靠的基础。 展开更多
关键词 膝关节骨关节炎 超声 mri 影像学检查
暂未订购
CT联合MRI对髋关节撞击综合征的诊断价值研究
10
作者 潘小文 高艳 +3 位作者 但倩 万趸 董晚亭 张德洲 《北京医学》 2025年第8期665-669,共5页
目的探讨CT联合MRI对髋关节撞击综合征(femoro-acetabular impingement,FAI)的诊断价值。方法回顾性选取2021年6月至2023年6月四川省骨科医院疑似FAI患者139例,患者均接受CT、MRI检查,分析其影像学特征,以关节镜诊断为金标准,分析CT联合... 目的探讨CT联合MRI对髋关节撞击综合征(femoro-acetabular impingement,FAI)的诊断价值。方法回顾性选取2021年6月至2023年6月四川省骨科医院疑似FAI患者139例,患者均接受CT、MRI检查,分析其影像学特征,以关节镜诊断为金标准,分析CT联合MRI对FAI的诊断价值。结果139例疑似FAI患者中,男59例,女80例,年龄19~82岁,平均(40.0±7.2)岁。关节镜诊断FAI患者134例,CT联合MRI应用与关节镜诊断的一致率和Kappa一致性系数分别为99.28%(138/139)和0.905(P<0.05)。CT联合MRI诊断FAI的准确率为99.28%、灵敏度为99.25%、特异性为100.00%、阳性和阴性预测值分别为100.00%和83.33%、AUC为0.890,CT联合MRI诊断FAI的准确率、灵敏度、阴性预测值、AUC均高于单独诊断,差异均有统计学意义(P<0.05)。CT显示股骨近端呈“枪柄样”改变,股骨头颈比例增大,α角>50°;股骨头、颈向后倾斜;股骨干与股骨颈夹角<125°;股骨颈与髋臼碰撞位置软骨损伤,表现为股骨颈囊性变、髋臼骨质硬化、软骨下囊变、盂唇退变。MRI显示盂唇撕裂,表现为盂唇增厚或移位,髋臼隐窝变小、髋臼盂唇内高信号;髋臼盂唇撕裂伴髋臼盂唇退变及盂唇旁囊肿,髋臼盂唇退变表现为髋臼盂唇增厚,盂唇内高信号;囊肿位于髋臼周围软组织内,T1WI低信号,T2WI高信号。结论CT可显示FAI患者股骨、髋臼解剖学和骨质异常,MRI可显示软组织损伤,两者联合可提高FAI的诊断价值。 展开更多
关键词 髋关节撞击综合征 磁共振成像 计算机断层扫描 影像学特征 诊断价值
原文传递
3D brain glioma segmentation in MRI through integrating multiple densely connected 2D convolutional neural networks 被引量:5
11
作者 Xiaobing ZHANG Yin HU +2 位作者 Wen CHEN Gang HUANG Shengdong NIE 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2021年第6期462-475,共14页
To overcome the computational burden of processing three-dimensional(3 D)medical scans and the lack of spatial information in two-dimensional(2 D)medical scans,a novel segmentation method was proposed that integrates ... To overcome the computational burden of processing three-dimensional(3 D)medical scans and the lack of spatial information in two-dimensional(2 D)medical scans,a novel segmentation method was proposed that integrates the segmentation results of three densely connected 2 D convolutional neural networks(2 D-CNNs).In order to combine the lowlevel features and high-level features,we added densely connected blocks in the network structure design so that the low-level features will not be missed as the network layer increases during the learning process.Further,in order to resolve the problems of the blurred boundary of the glioma edema area,we superimposed and fused the T2-weighted fluid-attenuated inversion recovery(FLAIR)modal image and the T2-weighted(T2)modal image to enhance the edema section.For the loss function of network training,we improved the cross-entropy loss function to effectively avoid network over-fitting.On the Multimodal Brain Tumor Image Segmentation Challenge(BraTS)datasets,our method achieves dice similarity coefficient values of 0.84,0.82,and 0.83 on the BraTS2018 training;0.82,0.85,and 0.83 on the BraTS2018 validation;and 0.81,0.78,and 0.83 on the BraTS2013 testing in terms of whole tumors,tumor cores,and enhancing cores,respectively.Experimental results showed that the proposed method achieved promising accuracy and fast processing,demonstrating good potential for clinical medicine. 展开更多
关键词 GLIOMA Magnetic resonance imaging(mri) SEGMENTATION Dense block 2D convolutional neural networks(2D-CNNs)
原文传递
超声、MRI联合检验指标在甲状腺C-TI-RADS4类结节诊断中的探讨
12
作者 杨燕 丁治国 +3 位作者 祁烁 王琪琪 王春风 张武平 《中国CT和MRI杂志》 2025年第9期40-43,共4页
目的探讨超声、MRI与检验指标在甲状腺C-TI-RADS4类结节诊断中意义。方法研究对象为甲状腺结节患者200例,超声和MRI检测。根据病理检测结果分为良性组(n=121),其他患者为恶性组(n=79)。比较其甲状腺结节性质和钙化情况等,以及FS-T2WI信... 目的探讨超声、MRI与检验指标在甲状腺C-TI-RADS4类结节诊断中意义。方法研究对象为甲状腺结节患者200例,超声和MRI检测。根据病理检测结果分为良性组(n=121),其他患者为恶性组(n=79)。比较其甲状腺结节性质和钙化情况等,以及FS-T2WI信号强度比(SIR)、b-value在300s/mm^(2)、500s/mm^(2)和800s/mm^(2)的表观扩散系数(ADC),并测定两组TPOAb、TGAb、TG和降钙素(CT)。通过Logistic多因素分析及ROC曲线评估超声、MRI及血清指标的诊断效能。结果恶性组统计学有意义(P<0.05);相关因素分析表明C-TI-RADS4评分、MRI特征和血清指标均是恶性甲状腺结节的显著影响因素(P<0.05),且超声、MRI和血清指标的联合检测诊断效能最高。结论超声、MRI特征及血清水平在良恶性甲状腺结节中有显著差异,基于超声、MRI联合血清指标对甲状腺C-TI-RADS4类结节的临床诊断价值显著。 展开更多
关键词 超声 mri 甲状腺结节 对比增强甲状腺影像报告和数据系统 诊断效能
暂未订购
Study on analytical noise propagation in convolutional neural network methods used in computed tomography imaging 被引量:7
13
作者 Xiao-Yue Guo Li Zhang Yu-Xiang Xing 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2022年第6期114-127,共14页
Neural network methods have recently emerged as a hot topic in computed tomography(CT) imaging owing to their powerful fitting ability;however, their potential applications still need to be carefully studied because t... Neural network methods have recently emerged as a hot topic in computed tomography(CT) imaging owing to their powerful fitting ability;however, their potential applications still need to be carefully studied because their results are often difficult to interpret and are ambiguous in generalizability. Thus, quality assessments of the results obtained from a neural network are necessary to evaluate the neural network. Assessing the image quality of neural networks using traditional objective measurements is not appropriate because neural networks are nonstationary and nonlinear. In contrast, subjective assessments are trustworthy, although they are time-and energy-consuming for radiologists. Model observers that mimic subjective assessment require the mean and covariance of images, which are calculated from numerous image samples;however, this has not yet been applied to the evaluation of neural networks. In this study, we propose an analytical method for noise propagation from a single projection to efficiently evaluate convolutional neural networks(CNNs) in the CT imaging field. We propagate noise through nonlinear layers in a CNN using the Taylor expansion. Nesting of the linear and nonlinear layer noise propagation constitutes the covariance estimation of the CNN. A commonly used U-net structure is adopted for validation. The results reveal that the covariance estimation obtained from the proposed analytical method agrees well with that obtained from the image samples for different phantoms, noise levels, and activation functions, demonstrating that propagating noise from only a single projection is feasible for CNN methods in CT reconstruction. In addition, we use covariance estimation to provide three measurements for the qualitative and quantitative performance evaluation of U-net. The results indicate that the network cannot be applied to projections with high noise levels and possesses limitations in terms of efficiency for processing low-noise projections. U-net is more effective in improving the image quality of smooth regions compared with that of the edge. LeakyReLU outperforms Swish in terms of noise reduction. 展开更多
关键词 Noise propagation convolutional neural network Image quality assessment
在线阅读 下载PDF
AI神经网络在颈椎间盘突出MRI影像诊断中的应用进展
14
作者 孙奎 蒋舒恬 +2 位作者 刘永皑 魏亚涛 高恒 《影像研究与医学应用》 2025年第6期1-4,共4页
颈椎间盘突出症(CDH)是一种常见的退行性脊柱疾病,其中移位的椎间盘组织可能压迫脊髓或神经根,导致疼痛、神经功能缺损和残疾。诊断CDH的金标准是MRI,其能够提供详细的软组织图像。然而,MRI图像的手动解读可能存在差异,导致诊断不一致... 颈椎间盘突出症(CDH)是一种常见的退行性脊柱疾病,其中移位的椎间盘组织可能压迫脊髓或神经根,导致疼痛、神经功能缺损和残疾。诊断CDH的金标准是MRI,其能够提供详细的软组织图像。然而,MRI图像的手动解读可能存在差异,导致诊断不一致。人工智能(AI),尤其是卷积神经网络(CNNs)的应用,在自动化诊断过程中显示出巨大的潜力,能够提高准确性并降低变异性。本文探讨了AI神经网络在通过MRI诊断CDH中的应用,包括最新进展、临床益处、面临的挑战,并探索了AI整合到临床实践中的未来方向。 展开更多
关键词 人工智能 颈椎间盘突出症 磁共振成像 卷积神经网络 应用进展
暂未订购
Breast Tumor Computer-Aided Detection System Based on Magnetic Resonance Imaging Using Convolutional Neural Network 被引量:5
15
作者 Jing Lu Yan Wu +4 位作者 Mingyan Hu Yao Xiong Yapeng Zhou Ziliang Zhao Liutong Shang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第1期365-377,共13页
Background:The main cause of breast cancer is the deterioration of malignant tumor cells in breast tissue.Early diagnosis of tumors has become the most effective way to prevent breast cancer.Method:For distinguishing ... Background:The main cause of breast cancer is the deterioration of malignant tumor cells in breast tissue.Early diagnosis of tumors has become the most effective way to prevent breast cancer.Method:For distinguishing between tumor and non-tumor in MRI,a new type of computer-aided detection CAD system for breast tumors is designed in this paper.The CAD system was constructed using three networks,namely,the VGG16,Inception V3,and ResNet50.Then,the influence of the convolutional neural network second migration on the experimental results was further explored in the VGG16 system.Result:CAD system built based on VGG16,Inception V3,and ResNet50 has higher performance than mainstream CAD systems.Among them,the system built based on VGG16 and ResNet50 has outstanding performance.We further explore the impact of the secondary migration on the experimental results in the VGG16 system,and these results show that the migration can improve system performance of the proposed framework.Conclusion:The accuracy of CNN represented by VGG16 is as high as 91.25%,which is more accurate than traditional machine learningmodels.The F1 score of the three basic networks that join the secondary migration is close to 1.0,and the performance of the VGG16-based breast tumor CAD system is higher than Inception V3,and ResNet50. 展开更多
关键词 Computer-aided diagnosis breast cancer VGG16 convolutional neural network magnetic resonance imaging
在线阅读 下载PDF
Counting of alpha particle tracks on imaging plate based on a convolutional neural network 被引量:3
16
作者 Feng-Di Qin Han-Yu Luo +5 位作者 Zheng-Zhong He Ke-Jun Lu Chuan-Gao Wang Meng-Meng Wu Zhong-Kai Fan Jian Shan 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第3期52-63,共12页
Imaging plates are widely used to detect alpha particles to track information,and the number of alpha particle tracks is affected by the overlapping and fading effects of the track information.In this study,an experim... Imaging plates are widely used to detect alpha particles to track information,and the number of alpha particle tracks is affected by the overlapping and fading effects of the track information.In this study,an experiment and a simulation were used to calibrate the efficiency parameter of an imaging plate,which was used to calculate the grayscale.Images were created by using grayscale,which trained the convolutional neural network to count the alpha tracks.The results demonstrated that the trained convolutional neural network can evaluate the alpha track counts based on the source and background images with a wider linear range,which was unaffected by the overlapping effect.The alpha track counts were unaffected by the fading effect within 60 min,where the calibrated formula for the fading effect was analyzed for 132.7 min.The detection efficiency of the trained convolutional neural network for inhomogeneous ^(241)Am sources(2π emission)was 0.6050±0.0399,whereas the efficiency curve of the photo-stimulated luminescence method was lower than that of the trained convolutional neural network. 展开更多
关键词 imaging plate convolutional neural network Alpha tracks counting
在线阅读 下载PDF
Brain Cancer Tumor Classification from Motion-Corrected MRI Images Using Convolutional Neural Network 被引量:3
17
作者 Hanan Abdullah Mengash Hanan A.Hosni Mahmoud 《Computers, Materials & Continua》 SCIE EI 2021年第8期1551-1563,共13页
Detection of brain tumors in MRI images is the first step in brain cancer diagnosis.The accuracy of the diagnosis depends highly on the expertise of radiologists.Therefore,automated diagnosis of brain cancer from MRI ... Detection of brain tumors in MRI images is the first step in brain cancer diagnosis.The accuracy of the diagnosis depends highly on the expertise of radiologists.Therefore,automated diagnosis of brain cancer from MRI is receiving a large amount of attention.Also,MRI tumor detection is usually followed by a biopsy(an invasive procedure),which is a medical procedure for brain tumor classification.It is of high importance to devise automated methods to aid radiologists in brain cancer tumor diagnosis without resorting to invasive procedures.Convolutional neural network(CNN)is deemed to be one of the best machine learning algorithms to achieve high-accuracy results in tumor identification and classification.In this paper,a CNN-based technique for brain tumor classification has been developed.The proposed CNN can distinguish between normal(no-cancer),astrocytoma tumors,gliomatosis cerebri tumors,and glioblastoma tumors.The implemented CNN was tested on MRI images that underwent a motion-correction procedure.The CNN was evaluated using two performance measurement procedures.The first one is a k-fold cross-validation testing method,in which we tested the dataset using k=8,10,12,and 14.The best accuracy for this procedure was 96.26%when k=10.To overcome the over-fitting problem that could be occurred in the k-fold testing method,we used a hold-out testing method as a second evaluation procedure.The results of this procedure succeeded in attaining 97.8%accuracy,with a specificity of 99.2%and a sensitivity of 97.32%.With this high accuracy,the developed CNN architecture could be considered an effective automated diagnosis method for the classification of brain tumors from MRI images. 展开更多
关键词 CLASSIFICATION convolutional neural network tumor classification mri deep learning k-fold cross classification
在线阅读 下载PDF
CT与MRI诊断女性常见盆腔生殖系统恶性肿瘤的价值对比
18
作者 唐庆昆 秦虎 《安徽医专学报》 2025年第5期27-29,33,共4页
目的:探讨计算机断层扫描(CT)、磁共振成像(MRI)在女性盆腔生殖系统常见恶性肿瘤诊断中的运用价值。方法:纳入152例疑似盆腔生殖系统常见恶性肿瘤女性患者,均实施CT和MRI诊断,以病理活检结果为确诊依据,对比CT和MRI的诊断效能及对不同... 目的:探讨计算机断层扫描(CT)、磁共振成像(MRI)在女性盆腔生殖系统常见恶性肿瘤诊断中的运用价值。方法:纳入152例疑似盆腔生殖系统常见恶性肿瘤女性患者,均实施CT和MRI诊断,以病理活检结果为确诊依据,对比CT和MRI的诊断效能及对不同疾病类型的检出率。结果:病理活检检出112例阳性,40例阴性。MRI组的诊断效能均优于CT组,差异有统计学意义(P<0.05);MRI检查方法对卵巢癌、卵巢转移癌、子宫内膜癌与子宫颈癌的检出率均优于CT组,差异有统计学意义(P<0.05)。结论:MRI较CT在诊断女性盆腔生殖系统常见恶性肿瘤中有明显优势,建议在诊断女性盆腔生殖系统恶性肿瘤时首先运用MRI检查。 展开更多
关键词 mri CT 盆腔生殖系统 恶性肿瘤 诊断效能
暂未订购
CTP成像联合MRI扩散加权成像对ACI分型的诊断效能
19
作者 史展 张丹卉 马爱珍 《生物医学工程学进展》 2025年第5期762-770,共9页
目的探讨CT灌注(CT Perfusion,CTP)成像联合MRI扩散加权成像(Diffusion-Weighted Imaging,DWI)在急性脑梗死(Acute Cerebral Infarction,ACI)不同TOAST分型中的诊断效能,为临床影像分型提供依据。方法回顾性分析2022年1月至2025年4月河... 目的探讨CT灌注(CT Perfusion,CTP)成像联合MRI扩散加权成像(Diffusion-Weighted Imaging,DWI)在急性脑梗死(Acute Cerebral Infarction,ACI)不同TOAST分型中的诊断效能,为临床影像分型提供依据。方法回顾性分析2022年1月至2025年4月河南科技大学第一附属医院收治的80例ACI患者资料,所有患者均于发病24小时内接受CTP与DWI检查。以临床综合诊断为参考标准,分别评估CTP、DWI及两者联合在ACI分型中的敏感度、特异度、准确率、Kappa一致性与受试者工作特征(Receiver Operating Characteristic,ROC)曲线下的AUC值,并进行统计学比较。结果在单独诊断中,CTP对LAA型ACI与CE型ACI的敏感度分别为88.57%、83.33%,DWI对SVO型ACI的敏感度为94.12%。联合诊断对LAA型ACI、CE型ACI、SVO型ACI的准确率分别达95.00%、96.25%、96.25%,明显高于CTP与DWI单独诊断。联合诊断的AUC值均超过0.95,Kappa值达0.842,优于CTP(0.726)与DWI(0.693),差异具有统计学意义(P<0.05)。结论CTP联合DWI在ACI TOAST分型中具有更高的准确性与一致性,优于单项影像学技术。其在早期分型诊断、病因机制推断及个体化治疗指导中具有重要的临床应用价值,建议作为卒中影像评估的常规组合手段。 展开更多
关键词 急性脑梗死 CT灌注成像 mri扩散加权成像 诊断效能
暂未订购
前列腺癌的Mp-MRI影像与中医证型相关性探析
20
作者 李海凤 代睿欣 《山西中医药大学学报》 2025年第10期1123-1128,共6页
目的:分析前列腺癌的多参数磁共振成像(Mp-MRI)影像表现与中医证型的相关性。方法:选取2020年8月—2021年11月在广州中医药大学第一附属医院、广东省中医院就诊的前列腺癌患者共40例,接受Mp-MRI检查,采用前列腺影像报告和数据系统第二版... 目的:分析前列腺癌的多参数磁共振成像(Mp-MRI)影像表现与中医证型的相关性。方法:选取2020年8月—2021年11月在广州中医药大学第一附属医院、广东省中医院就诊的前列腺癌患者共40例,接受Mp-MRI检查,采用前列腺影像报告和数据系统第二版(PI-RADS V2)标准评价MRI影像表现,并采用中医证候调查表将患者辨证分为肾气亏虚、湿热蕴积、瘀热内结、毒邪稽留气阴两虚4种中医证型,使用单因素分析和多因素logistic回归分析,探讨不同影像表现与中医证型的相关性。结果:(1)单因素定量指标分析结果显示:湿热蕴积型、瘀热内结型的肿瘤最大径明显小于毒邪稽留气阴两虚型,差异有统计学意义(P<0.05)。(2)单因素定性指标分析结果显示:毒邪稽留气阴两虚型的前列腺包膜不完整占比高于瘀热内结型,周围浸润、盆腔淋巴结肿大的占比均高于瘀热内结型和湿热蕴积型,PI-RADS评分5分占比高于湿热蕴积型;毒邪稽留气阴两虚型、肾气亏虚型的骨质破坏占比高于瘀热内结型和湿热蕴积型,差异均有统计学意义(P<0.05)。(3)多因素logistic回归分析结果显示:与湿热蕴积型比较,有骨质破坏的患者更易表现出肾气亏虚型证候(OR=5.1E+08),其次为瘀热内结型证候(OR=3.92E+07),差异有统计学意义(P<0.05)。结论:前列腺癌的Mp-MRI影像表现如肿瘤最大径、前列腺包膜完整性、周围浸润、盆腔淋巴结肿大、骨质破坏、PI-RADS评分对于前列腺癌的中医辨证分型有提示意义。前列腺癌患者出现骨质破坏的影像表现与肾气亏虚证的相关性最大,其次为瘀热内结证。 展开更多
关键词 前列腺癌 多参数磁共振成像 影像表现 中医证型
暂未订购
上一页 1 2 250 下一页 到第
使用帮助 返回顶部