Long-term levodopa administration can lead to the development of levodopa-induced dyskinesia.Gamma oscillations are a widely recognized hallmark of abnormal neural electrical activity in levodopa-induced dyskinesia.Cu...Long-term levodopa administration can lead to the development of levodopa-induced dyskinesia.Gamma oscillations are a widely recognized hallmark of abnormal neural electrical activity in levodopa-induced dyskinesia.Currently,studies have reported increased oscillation power in cases of levodopa-induced dyskinesia.However,little is known about how the other electrophysiological parameters of gamma oscillations are altered in levodopa-induced dyskinesia.Furthermore,the role of the dopamine D3 receptor,which is implicated in levodopa-induced dyskinesia,in movement disorder-related changes in neural oscillations is unclear.We found that the cortico-striatal functional connectivity of beta oscillations was enhanced in a model of Parkinson’s disease.Furthermore,levodopa application enhanced cortical gamma oscillations in cortico-striatal projections and cortical gamma aperiodic components,as well as bidirectional primary motor cortex(M1)↔dorsolateral striatum gamma flow.Administration of PD128907(a selective dopamine D3 receptor agonist)induced dyskinesia and excessive gamma oscillations with a bidirectional M1↔dorsolateral striatum flow.However,administration of PG01037(a selective dopamine D3 receptor antagonist)attenuated dyskinesia,suppressed gamma oscillations and cortical gamma aperiodic components,and decreased gamma causality in the M1→dorsolateral striatum direction.These findings suggest that the dopamine D3 receptor plays a role in dyskinesia-related oscillatory activity,and that it has potential as a therapeutic target for levodopa-induced dyskinesia.展开更多
We present a theoretical model for detecting axions from neutron stars in a QCD phase of quark matter. The axions would be produced from a quark-antiquark pair uu¯or dd¯, in loop(s) involving gluons. The chi...We present a theoretical model for detecting axions from neutron stars in a QCD phase of quark matter. The axions would be produced from a quark-antiquark pair uu¯or dd¯, in loop(s) involving gluons. The chiral anomaly of QCD and the spontaneously broken symmetry are invoked to explain the non-conservation of the axion current. From the coupling form factors, the axion emissivities ϵacan be derived, from which fluxes can be determined. We predict a photon flux, which may be detectable by Fermi LAT, and limits on the QCD mass ma. In this model, axions decay to gamma rays in a 2-photon vertex. We may determine the expected fluxes from the theoretical emissivity. The sensitivity curve from the Fermi Large Area Telescope (Fermi LAT) would allow axion mass constraints for neutron stars as low as ma≤10−14eV 95% C.L. Axions could thus be detectable in gamma rays for neutron stars as distant as 100 kpc. A signal from LIGO GWS 170817 could be placed from the NS-NS merger, which gives an upper limit of ma≤10−10eV.展开更多
Improving protein quality and grain yield traits coordinately is an important goal for crop breeding.To date,many protein-quality or grain-yield regulation genes have been identified.However,the genetic strategies int...Improving protein quality and grain yield traits coordinately is an important goal for crop breeding.To date,many protein-quality or grain-yield regulation genes have been identified.However,the genetic strategies integrating these genes in good-protein-quality and high-yield crop breeding practice are far from established.Here,we characterized the functions of the MADS domain-containing protein Zm MADS8 and Zea mays G protein gamma subunit 1(Zm GG1)in regulating protein quality and grain yield of maize.Zm MADS8 positively regulates zein protein accumulation and negatively regulates nonzein protein and lysine levels in kernels by interacting with Zm MADS47 to promote the transcriptional activation of Opaque2.Additionally,Zm MADS8 regulates starch content of kernels by targeting genes involved in starch biosynthesis.Zm GG1,a putative interactor of Zm MADS8,negatively regulates kernel number with a trade-off effect on kernel starch accumulation.The mads8;zmgg1 double mutant improved protein quality by attenuating zein biosynthesis and increasing essential lysine level,and increased grain yield by increasing kernel number,compensating for decreased starch biosynthesis.Our findings revealed the biological function of Zm MADS8 and Zm GG1 in regulating protein quality and yield related traits and suggested a genetic strategy by direct editing of Zm MADS8 and Zm GG1 to improve grain yield and protein quality simultaneously.展开更多
Investigating the influence of radiation on glass fibre composites is essential for their use in space and aerospace environment.Gaining insight into the damage mechanisms caused by gamma irradiation,can improve the s...Investigating the influence of radiation on glass fibre composites is essential for their use in space and aerospace environment.Gaining insight into the damage mechanisms caused by gamma irradiation,can improve the safety and resilience of structures.This paper is aimed at investigating the failure mode and damage of gamma-irradiated repurposed pultruded glass fibre-reinforced polyester subjected to lowvelocity impact using three types of non-destructive techniques.Three sets of differently layered configurations(CRC,WCRW,W2CR2C)consisting of chopped(c),roving(r),and weaved(w)fibre-reinforced polyester are applied in this study.Drop hammer test is applied to evaluate the low-impact resistance properties of Gamma-irradiated composite at 100 kGy,500 kGy,and 1000 kGy.Preliminary flexural and hardness tests are conducted to further assess the behaviour of irradiated polymer composites.Further,the damage modes associated with the low-impact test are characterised using infrared thermography,flat panel digital radiography,and microscope observation.The results show that the composites irradiated with various doses display good impact resistance at 20 J,presenting minor damages in the form of dents on the surface.The irradiated CRC and WCRW display best impact resistance at 500 kGy,while W2CR2C at 1000 kGy.This shows that the layering sequence of reinforcement fibre can influence the impact resistance of irradiated composites.Apart from that,the application of non-destructive techniques show different damage mechanisms in the form resin cracks,yarn splitting/fracture,and matrix splitting when the composites are exposed at high and low irradiation doses.These findings offer valuable data for the defence industry,particularly in the areas of repair,maintenance,and the development of new materials.展开更多
Osteosarcoma(OS)is the most prevalent primary malignant bone tumor affecting children and adolescents.Despite ongoing research efforts,the 5-year survival rate has remained stagnant for many years,highlighting the cri...Osteosarcoma(OS)is the most prevalent primary malignant bone tumor affecting children and adolescents.Despite ongoing research efforts,the 5-year survival rate has remained stagnant for many years,highlighting the critical need for novel drug development to enhance current treatment protocols.ZiyuglycosideⅡ(ZYGⅡ),a triterpenoid saponin extracted from S.officinalis,has recently demonstrated antitumor properties.This study evaluates the antitumor effect of ZYGⅡon osteosarcoma and elucidates its mechanism of action through the co-regulation of p53 and estrogen-related receptor gamma(ESRRG),which inhibits disease progression.The research employs in vitro experiments using multiple established osteosarcoma cell lines,as well as in vivo studies utilizing a nude mouse model of orthotopic xenograft osteosarcoma.Additionally,ESRRG shRNA was used to construct stable ESRRG-reducing OS cell lines to investigate the molecular mechanism by which ZYGⅡexerts its anti-osteosarcoma effects through the co-regulation of ESRRG and p53.Results indicate that ZYGⅡadministration led to decreased OS cell viability and reduced tumor volumes.Furthermore,cell cycles were arrested at the G_(0)/G1 phase,while the proportion of apoptotic cells increased.Expression of p53,ESRRG,p21,Bax,Cleaved Caspase-9,and Cleaved Caspase-3 proteins increased,while expression of CDK4,Cyclin D1,and Bcl-2 proteins decreased.Multiple ZYGⅡand ESRRG docking patterns were simulated through molecular docking.Comparing the pharmacodynamic response of ZYGⅡto OS cell lines with reduced ESRRG and normal expression demonstrated that ZYGⅡinhibits osteosarcoma progression,induces cell cycle arrest,and promotes cell apoptosis through the coordination of p53 and ESRRG.In conclusion,ZYGⅡinhibits osteosarcoma progression,leads to cell cycle arrest,and promotes cell apoptosis through synergistic regulation of p53 and ESRRG.展开更多
The multiple nuclides identification algorithm with low consumption and strong robustness is crucial for rapid radioactive source searching.This study investigates the design of a low-consumption multiple nuclides ide...The multiple nuclides identification algorithm with low consumption and strong robustness is crucial for rapid radioactive source searching.This study investigates the design of a low-consumption multiple nuclides identification algorithm for portable gamma spectrometers.First,the gamma spectra of 12 target nuclides(including the background case)were measured to create training datasets.The characteristic energies,obtained through energy calibration and full-energy peak addresses,are utilized as input features for a neural network.A large number of single-and multiple-nuclide training datasets are generated using random combinations and small-range drifting.Subsequently,a multi-label classification neural network based on a binary cross-entropy loss function is applied to export the existence probability of certain nuclides.The designed algorithm effectively reduces the computation time and storage space required by the neural network and has been successfully implemented in a portable gamma spectrometer with a running time of t_(r)<2 s.Results show that,in both validation and actual tests,the identification accuracy of the designed algorithm reaches 94.8%,for gamma spectra with a dose rate of d≈0.5μSv∕h and a measurement time t_(m)=60 s.This improves the ability to perform rapid on-site nuclide identification at important sites.展开更多
The early developmental period is a critical window during which brain cells mature and contribute to both brain development and later life functions.Gamma-aminobutyric acid(GABA),recognized as a major neurotransmitte...The early developmental period is a critical window during which brain cells mature and contribute to both brain development and later life functions.Gamma-aminobutyric acid(GABA),recognized as a major neurotransmitter,plays a crucial role in coordinating synapse formation,neuronal proliferation,and migration during this time.展开更多
Energy-variable gamma-rays are produced in Laser Compton Slant-scattering mode at the Shanghai Laser Electron Gamma Source(SLEGS),a beamline of the Shanghai Synchrotron Radiation Facility(also called Shanghai Light So...Energy-variable gamma-rays are produced in Laser Compton Slant-scattering mode at the Shanghai Laser Electron Gamma Source(SLEGS),a beamline of the Shanghai Synchrotron Radiation Facility(also called Shanghai Light Source).Based on the SLEGS energy-variable gamma-ray beam,a positron generation system composed of a gamma-ray-driven section,positron-generated target,magnet separation section and positron experimental section was designed for SLEGS.Geant4 simulation results show that the energy tunable positron beam in the energy range of 1–12.9 MeV with a flux of 3.7×10^(4)–6.9×10^(5)e^(+)∕s can be produced in this positron generation system.The positron beam generation and separation provide favorable experimental conditions for conducting nondestructive positron testing on SLEGS in the future.The positron generation system is currently under construction and will be completed in 2025.展开更多
The Cooling Storage Ring of the Heavy Ion Research Facility in Lanzhou(HIRFL-CSR)was constructed to study nuclear physics,atomic physics,interdisciplinary science,and related applications.The External Target Facility(...The Cooling Storage Ring of the Heavy Ion Research Facility in Lanzhou(HIRFL-CSR)was constructed to study nuclear physics,atomic physics,interdisciplinary science,and related applications.The External Target Facility(ETF)is located in the main ring of the HIRFL-CSR.The gamma detector of the ETF is built to measure emitted gamma rays with energies below 5 MeV in the center-of-mass frame and is planned to measure light fragments with energies up to 300 MeV.The readout electronics for the gamma detector were designed and commissioned.The readout electronics consist of thirty-two front-end cards,thirty-two readout control units(RCUs),one common readout unit,one synchronization&clock unit,and one sub-trigger unit.By using the real-time peak-detection algorithm implemented in the RCU,the data volume can be significantly reduced.In addition,trigger logic selection algorithms are implemented to improve the selection of useful events and reduce the data size.The test results show that the integral nonlinearity of the readout electronics is less than 1%,and the energy resolution for measuring the 60 Co source is better than 5.5%.This study discusses the design and performance of the readout electronics.展开更多
Background:Glioblastoma(GBM)is one of the most malignant types of central nervous system tumors.Oxygen deprivation in the tumor microenvironment is thought to be an important factor in promoting GBM progression.Howeve...Background:Glioblastoma(GBM)is one of the most malignant types of central nervous system tumors.Oxygen deprivation in the tumor microenvironment is thought to be an important factor in promoting GBM progression.However,the mechanisms of hypoxia-promoted tumor progression remain elusive.Methods:Alternative splicing of diacylglycerol kinase gamma(DGKG)-Δexon13 was amplified and verified by PCR-Sanger sequencing.The functions of DGKG and DGKG-Δexon13 were analyzed by Cell counting kit-8(CCK-8),Transwell,Matrigeltranswell experiments,and in vivo orthotropic GBM animal models.Transcriptome analyses were done to find out the regulated genes.Results:In this study,we found that a new transcript DGKG-Δexon13 was generated in GBM under hypoxia via alternative splicing.Moreover,the results of CCK-8,Transwell,and Matrigel-transwell experiments showed that the proliferation,migration,and invasion abilities of U87-MG and T98G were decreased after DGKG knockdown.Compared to wild-type DGKG,DGKG-Δexon13 overexpression significantly promoted cellular proliferation,migration,and invasion abilities in GBM.Furthermore,in vivo,orthotropic GBM animal models analysis showed that the tumor volumes were much smaller in the DGKG knockdown group.However,the tumor sizes in the DGKG and DGKG-Δexon13 rescue groups were restored,especially in the DGKG-Δexon13 group.Transcriptome analysis revealed that MORC1,KLHDC7B,ATP1A2,INHBE,TMEM119,and FGD3 were altered significantly when DGKG was knocked down.IL-16,CCN2,and EFNB3 were specifically regulated by DGKG-Δexon13.Conclusions:Our study found that hypoxia-induced alternative splicing transcript DGKG-Δexon13 promotes GBM proliferation and infiltration,which might provide a new potential target for the clinical treatment and diagnosis of GBM.展开更多
基金supported by the National Natural Science Foundation of China,No.82071254(to WZ).
文摘Long-term levodopa administration can lead to the development of levodopa-induced dyskinesia.Gamma oscillations are a widely recognized hallmark of abnormal neural electrical activity in levodopa-induced dyskinesia.Currently,studies have reported increased oscillation power in cases of levodopa-induced dyskinesia.However,little is known about how the other electrophysiological parameters of gamma oscillations are altered in levodopa-induced dyskinesia.Furthermore,the role of the dopamine D3 receptor,which is implicated in levodopa-induced dyskinesia,in movement disorder-related changes in neural oscillations is unclear.We found that the cortico-striatal functional connectivity of beta oscillations was enhanced in a model of Parkinson’s disease.Furthermore,levodopa application enhanced cortical gamma oscillations in cortico-striatal projections and cortical gamma aperiodic components,as well as bidirectional primary motor cortex(M1)↔dorsolateral striatum gamma flow.Administration of PD128907(a selective dopamine D3 receptor agonist)induced dyskinesia and excessive gamma oscillations with a bidirectional M1↔dorsolateral striatum flow.However,administration of PG01037(a selective dopamine D3 receptor antagonist)attenuated dyskinesia,suppressed gamma oscillations and cortical gamma aperiodic components,and decreased gamma causality in the M1→dorsolateral striatum direction.These findings suggest that the dopamine D3 receptor plays a role in dyskinesia-related oscillatory activity,and that it has potential as a therapeutic target for levodopa-induced dyskinesia.
文摘We present a theoretical model for detecting axions from neutron stars in a QCD phase of quark matter. The axions would be produced from a quark-antiquark pair uu¯or dd¯, in loop(s) involving gluons. The chiral anomaly of QCD and the spontaneously broken symmetry are invoked to explain the non-conservation of the axion current. From the coupling form factors, the axion emissivities ϵacan be derived, from which fluxes can be determined. We predict a photon flux, which may be detectable by Fermi LAT, and limits on the QCD mass ma. In this model, axions decay to gamma rays in a 2-photon vertex. We may determine the expected fluxes from the theoretical emissivity. The sensitivity curve from the Fermi Large Area Telescope (Fermi LAT) would allow axion mass constraints for neutron stars as low as ma≤10−14eV 95% C.L. Axions could thus be detectable in gamma rays for neutron stars as distant as 100 kpc. A signal from LIGO GWS 170817 could be placed from the NS-NS merger, which gives an upper limit of ma≤10−10eV.
基金supported by the Biological Breeding-National Science and Technology Major Project(2023ZD0406804,2023ZD0402701)Major Project of Hubei Hongshan Laboratory(2022hszd019)First-Class Discipline Construction Funds of the College of Plant Science and Technology at Huazhong Agricultural University(2022ZK PY002)。
文摘Improving protein quality and grain yield traits coordinately is an important goal for crop breeding.To date,many protein-quality or grain-yield regulation genes have been identified.However,the genetic strategies integrating these genes in good-protein-quality and high-yield crop breeding practice are far from established.Here,we characterized the functions of the MADS domain-containing protein Zm MADS8 and Zea mays G protein gamma subunit 1(Zm GG1)in regulating protein quality and grain yield of maize.Zm MADS8 positively regulates zein protein accumulation and negatively regulates nonzein protein and lysine levels in kernels by interacting with Zm MADS47 to promote the transcriptional activation of Opaque2.Additionally,Zm MADS8 regulates starch content of kernels by targeting genes involved in starch biosynthesis.Zm GG1,a putative interactor of Zm MADS8,negatively regulates kernel number with a trade-off effect on kernel starch accumulation.The mads8;zmgg1 double mutant improved protein quality by attenuating zein biosynthesis and increasing essential lysine level,and increased grain yield by increasing kernel number,compensating for decreased starch biosynthesis.Our findings revealed the biological function of Zm MADS8 and Zm GG1 in regulating protein quality and yield related traits and suggested a genetic strategy by direct editing of Zm MADS8 and Zm GG1 to improve grain yield and protein quality simultaneously.
基金funded by Universiti Tenaga Nasional(UNITEN),Malaysia for supporting this research under the Dato'Low Tuck Kwong International Grant,project code 20238002DLTKsupport for this work from the Ministry of Higher EducationMalaysia through the Higher Institution Center of Excellence(HICoE 2023-JPT(BPKI)1000/016/018/34(5))program+2 种基金supported by Tenaga Nasional Berhad(TNB)and UNITEN through the BOLD Refresh Postdoctoral Fellowships under Grant J510050002-IC-6 BOLDREFRESH2023-Centre of ExcellencePrince Sultan University for their supportIndustrial Technology Division,Malaysian Nuclear Agency for their support in this research work.
文摘Investigating the influence of radiation on glass fibre composites is essential for their use in space and aerospace environment.Gaining insight into the damage mechanisms caused by gamma irradiation,can improve the safety and resilience of structures.This paper is aimed at investigating the failure mode and damage of gamma-irradiated repurposed pultruded glass fibre-reinforced polyester subjected to lowvelocity impact using three types of non-destructive techniques.Three sets of differently layered configurations(CRC,WCRW,W2CR2C)consisting of chopped(c),roving(r),and weaved(w)fibre-reinforced polyester are applied in this study.Drop hammer test is applied to evaluate the low-impact resistance properties of Gamma-irradiated composite at 100 kGy,500 kGy,and 1000 kGy.Preliminary flexural and hardness tests are conducted to further assess the behaviour of irradiated polymer composites.Further,the damage modes associated with the low-impact test are characterised using infrared thermography,flat panel digital radiography,and microscope observation.The results show that the composites irradiated with various doses display good impact resistance at 20 J,presenting minor damages in the form of dents on the surface.The irradiated CRC and WCRW display best impact resistance at 500 kGy,while W2CR2C at 1000 kGy.This shows that the layering sequence of reinforcement fibre can influence the impact resistance of irradiated composites.Apart from that,the application of non-destructive techniques show different damage mechanisms in the form resin cracks,yarn splitting/fracture,and matrix splitting when the composites are exposed at high and low irradiation doses.These findings offer valuable data for the defence industry,particularly in the areas of repair,maintenance,and the development of new materials.
基金supported by the National Key Research and Development Program of China(No.2022YFC3502100)the National Natural Science Foundation of China(No.82274197)+1 种基金the Cutting Edge Development Fund of Advanced Medical Research Institute Municipal Science and(No.GYY2023QY01)the Technology Project of Jinan City(No.202228099).
文摘Osteosarcoma(OS)is the most prevalent primary malignant bone tumor affecting children and adolescents.Despite ongoing research efforts,the 5-year survival rate has remained stagnant for many years,highlighting the critical need for novel drug development to enhance current treatment protocols.ZiyuglycosideⅡ(ZYGⅡ),a triterpenoid saponin extracted from S.officinalis,has recently demonstrated antitumor properties.This study evaluates the antitumor effect of ZYGⅡon osteosarcoma and elucidates its mechanism of action through the co-regulation of p53 and estrogen-related receptor gamma(ESRRG),which inhibits disease progression.The research employs in vitro experiments using multiple established osteosarcoma cell lines,as well as in vivo studies utilizing a nude mouse model of orthotopic xenograft osteosarcoma.Additionally,ESRRG shRNA was used to construct stable ESRRG-reducing OS cell lines to investigate the molecular mechanism by which ZYGⅡexerts its anti-osteosarcoma effects through the co-regulation of ESRRG and p53.Results indicate that ZYGⅡadministration led to decreased OS cell viability and reduced tumor volumes.Furthermore,cell cycles were arrested at the G_(0)/G1 phase,while the proportion of apoptotic cells increased.Expression of p53,ESRRG,p21,Bax,Cleaved Caspase-9,and Cleaved Caspase-3 proteins increased,while expression of CDK4,Cyclin D1,and Bcl-2 proteins decreased.Multiple ZYGⅡand ESRRG docking patterns were simulated through molecular docking.Comparing the pharmacodynamic response of ZYGⅡto OS cell lines with reduced ESRRG and normal expression demonstrated that ZYGⅡinhibits osteosarcoma progression,induces cell cycle arrest,and promotes cell apoptosis through the coordination of p53 and ESRRG.In conclusion,ZYGⅡinhibits osteosarcoma progression,leads to cell cycle arrest,and promotes cell apoptosis through synergistic regulation of p53 and ESRRG.
文摘The multiple nuclides identification algorithm with low consumption and strong robustness is crucial for rapid radioactive source searching.This study investigates the design of a low-consumption multiple nuclides identification algorithm for portable gamma spectrometers.First,the gamma spectra of 12 target nuclides(including the background case)were measured to create training datasets.The characteristic energies,obtained through energy calibration and full-energy peak addresses,are utilized as input features for a neural network.A large number of single-and multiple-nuclide training datasets are generated using random combinations and small-range drifting.Subsequently,a multi-label classification neural network based on a binary cross-entropy loss function is applied to export the existence probability of certain nuclides.The designed algorithm effectively reduces the computation time and storage space required by the neural network and has been successfully implemented in a portable gamma spectrometer with a running time of t_(r)<2 s.Results show that,in both validation and actual tests,the identification accuracy of the designed algorithm reaches 94.8%,for gamma spectra with a dose rate of d≈0.5μSv∕h and a measurement time t_(m)=60 s.This improves the ability to perform rapid on-site nuclide identification at important sites.
基金supported by the Center for Cognition and Sociality,Institute for Basic Science(IBS)(IBS-R001-D2)(to WK).
文摘The early developmental period is a critical window during which brain cells mature and contribute to both brain development and later life functions.Gamma-aminobutyric acid(GABA),recognized as a major neurotransmitter,plays a crucial role in coordinating synapse formation,neuronal proliferation,and migration during this time.
基金supported by the National Key Research and Development program(Nos.2022YFA1602404,2023YFA1606901)the National Natural Science Foundation of China(Nos.12275338,12388102,and U2441221)the Key Laboratory of Nuclear Data foundation(JCKY2022201C152)xm。
文摘Energy-variable gamma-rays are produced in Laser Compton Slant-scattering mode at the Shanghai Laser Electron Gamma Source(SLEGS),a beamline of the Shanghai Synchrotron Radiation Facility(also called Shanghai Light Source).Based on the SLEGS energy-variable gamma-ray beam,a positron generation system composed of a gamma-ray-driven section,positron-generated target,magnet separation section and positron experimental section was designed for SLEGS.Geant4 simulation results show that the energy tunable positron beam in the energy range of 1–12.9 MeV with a flux of 3.7×10^(4)–6.9×10^(5)e^(+)∕s can be produced in this positron generation system.The positron beam generation and separation provide favorable experimental conditions for conducting nondestructive positron testing on SLEGS in the future.The positron generation system is currently under construction and will be completed in 2025.
基金supported by the National Natural Science Foundation of China (Nos. 12222512, 12375193, U2031206, U1831206, and U2032209)the Scientific Instrument Developing Project of the Chinese Academy of Sciences (GJJSTD20210009)+1 种基金the CAS Pioneer Hundred Talent Programthe CAS Light of West China Program
文摘The Cooling Storage Ring of the Heavy Ion Research Facility in Lanzhou(HIRFL-CSR)was constructed to study nuclear physics,atomic physics,interdisciplinary science,and related applications.The External Target Facility(ETF)is located in the main ring of the HIRFL-CSR.The gamma detector of the ETF is built to measure emitted gamma rays with energies below 5 MeV in the center-of-mass frame and is planned to measure light fragments with energies up to 300 MeV.The readout electronics for the gamma detector were designed and commissioned.The readout electronics consist of thirty-two front-end cards,thirty-two readout control units(RCUs),one common readout unit,one synchronization&clock unit,and one sub-trigger unit.By using the real-time peak-detection algorithm implemented in the RCU,the data volume can be significantly reduced.In addition,trigger logic selection algorithms are implemented to improve the selection of useful events and reduce the data size.The test results show that the integral nonlinearity of the readout electronics is less than 1%,and the energy resolution for measuring the 60 Co source is better than 5.5%.This study discusses the design and performance of the readout electronics.
基金funded by Guizhou Province Science and Technology Plan Project Qiankehe Foundation-ZK[2023]General 360,362Science and Technology Fund project of Guizhou Provincial Health Commission(gzwkj-2022-09,gzwkj-2023-035)+1 种基金National Natural Science Foundation Cultivation Project of Guizhou Medical University(21NSFCP14,gyfynsfc-2022-25)The PhD Scientific Research Launch Fund Project of the Affiliated Hospital of Guizhou Medical University(gyfybsky-2022-02).
文摘Background:Glioblastoma(GBM)is one of the most malignant types of central nervous system tumors.Oxygen deprivation in the tumor microenvironment is thought to be an important factor in promoting GBM progression.However,the mechanisms of hypoxia-promoted tumor progression remain elusive.Methods:Alternative splicing of diacylglycerol kinase gamma(DGKG)-Δexon13 was amplified and verified by PCR-Sanger sequencing.The functions of DGKG and DGKG-Δexon13 were analyzed by Cell counting kit-8(CCK-8),Transwell,Matrigeltranswell experiments,and in vivo orthotropic GBM animal models.Transcriptome analyses were done to find out the regulated genes.Results:In this study,we found that a new transcript DGKG-Δexon13 was generated in GBM under hypoxia via alternative splicing.Moreover,the results of CCK-8,Transwell,and Matrigel-transwell experiments showed that the proliferation,migration,and invasion abilities of U87-MG and T98G were decreased after DGKG knockdown.Compared to wild-type DGKG,DGKG-Δexon13 overexpression significantly promoted cellular proliferation,migration,and invasion abilities in GBM.Furthermore,in vivo,orthotropic GBM animal models analysis showed that the tumor volumes were much smaller in the DGKG knockdown group.However,the tumor sizes in the DGKG and DGKG-Δexon13 rescue groups were restored,especially in the DGKG-Δexon13 group.Transcriptome analysis revealed that MORC1,KLHDC7B,ATP1A2,INHBE,TMEM119,and FGD3 were altered significantly when DGKG was knocked down.IL-16,CCN2,and EFNB3 were specifically regulated by DGKG-Δexon13.Conclusions:Our study found that hypoxia-induced alternative splicing transcript DGKG-Δexon13 promotes GBM proliferation and infiltration,which might provide a new potential target for the clinical treatment and diagnosis of GBM.