The error correction performance of Belief Propagation(BP)decoding for polar codes is satisfactory compared with the Successive Cancellation(SC)decoding.Nevertheless,it has to complete a fixed number of iterations,whi...The error correction performance of Belief Propagation(BP)decoding for polar codes is satisfactory compared with the Successive Cancellation(SC)decoding.Nevertheless,it has to complete a fixed number of iterations,which results in high computational complexity.This necessitates an intelligent identification of successful BP decoding for early termination of the decoding process to avoid unnecessary iterations and minimize the computational complexity of BP decoding.This paper proposes a hybrid technique that combines the“paritycheck”with the“G-matrix”to reduce the computational complexity of BP decoder for polar codes.The proposed hybrid technique takes advantage of the parity-check to intelligently identify the valid codeword at an early stage and terminate the BP decoding process,which minimizes the overhead of the G-matrix and reduces the computational complexity of BP decoding.We explore a detailed mechanism incorporating the parity bits as outer code and prove that the proposed hybrid technique minimizes the computational complexity while preserving the BP error correction performance.Moreover,mathematical formulation for the proposed hybrid technique that minimizes the computation cost of the G-matrix is elaborated.The performance of the proposed hybrid technique is validated by comparing it with the state-of-the-art early stopping criteria for BP decoding.Simulation results show that the proposed hybrid technique reduces the iterations by about 90%of BP decoding in a high Signal-to-Noise Ratio(SNR)(i.e.,3.5~4 dB),and approaches the error correction performance of G-matrix and conventional BP decoder for polar codes.展开更多
G-DINA(the generalizeddeterministic input,noisy and gate)模型限制条件少,应用范围广,满足大量心理与教育评估测验数据的要求。研究提出一种适用于G-DINA等模型的同时标定新题Q矩阵与项目参数的认知诊断计算机化自适应测验(CD-CAT)...G-DINA(the generalizeddeterministic input,noisy and gate)模型限制条件少,应用范围广,满足大量心理与教育评估测验数据的要求。研究提出一种适用于G-DINA等模型的同时标定新题Q矩阵与项目参数的认知诊断计算机化自适应测验(CD-CAT)在线标定新方法SCADOCM,以期促进CD-CAT在实践中的推广与应用。本研究分别基于模拟题库以及真实题库进行研究,结果表明:相比传统的SIE方法,SCADOCM在各实验条件下均具有较为理想的标定精度与标定效率,应用前景较好;SIE方法不适用于饱和的G-DINA等模型,其各实验条件下的Q矩阵标定精度均较低。展开更多
基金This work is partially supported by the National Key Research and Development Project under Grant 2018YFB1802402.
文摘The error correction performance of Belief Propagation(BP)decoding for polar codes is satisfactory compared with the Successive Cancellation(SC)decoding.Nevertheless,it has to complete a fixed number of iterations,which results in high computational complexity.This necessitates an intelligent identification of successful BP decoding for early termination of the decoding process to avoid unnecessary iterations and minimize the computational complexity of BP decoding.This paper proposes a hybrid technique that combines the“paritycheck”with the“G-matrix”to reduce the computational complexity of BP decoder for polar codes.The proposed hybrid technique takes advantage of the parity-check to intelligently identify the valid codeword at an early stage and terminate the BP decoding process,which minimizes the overhead of the G-matrix and reduces the computational complexity of BP decoding.We explore a detailed mechanism incorporating the parity bits as outer code and prove that the proposed hybrid technique minimizes the computational complexity while preserving the BP error correction performance.Moreover,mathematical formulation for the proposed hybrid technique that minimizes the computation cost of the G-matrix is elaborated.The performance of the proposed hybrid technique is validated by comparing it with the state-of-the-art early stopping criteria for BP decoding.Simulation results show that the proposed hybrid technique reduces the iterations by about 90%of BP decoding in a high Signal-to-Noise Ratio(SNR)(i.e.,3.5~4 dB),and approaches the error correction performance of G-matrix and conventional BP decoder for polar codes.
基金National Natural Science Foundation of China(No.82104430,82274133)Shanghai Sailing Project(No.21YF1447600)Shanghai University of Traditional Chinese Medicine Students'Innovation Program。
文摘G-DINA(the generalizeddeterministic input,noisy and gate)模型限制条件少,应用范围广,满足大量心理与教育评估测验数据的要求。研究提出一种适用于G-DINA等模型的同时标定新题Q矩阵与项目参数的认知诊断计算机化自适应测验(CD-CAT)在线标定新方法SCADOCM,以期促进CD-CAT在实践中的推广与应用。本研究分别基于模拟题库以及真实题库进行研究,结果表明:相比传统的SIE方法,SCADOCM在各实验条件下均具有较为理想的标定精度与标定效率,应用前景较好;SIE方法不适用于饱和的G-DINA等模型,其各实验条件下的Q矩阵标定精度均较低。