A sensor,serving as a transducer,produces a quantifiable output in response to a predetermined input stimulus,which may be of a chemical or physical nature.The field of gas detection has experienced a substantial surg...A sensor,serving as a transducer,produces a quantifiable output in response to a predetermined input stimulus,which may be of a chemical or physical nature.The field of gas detection has experienced a substantial surge in research activity,attributable to the diverse functionalities and enhanced accessibility of advanced active materials.In this work,recent advances in gas sensors,specifically those utilizing Field Effect Transistors(FETs),are summarized,including device configurations,response characteristics,sensor materials,and application domains.In pursuing high-performance artificial olfactory systems,the evolution of FET gas sensors necessitates their synchronization with material advancements.These materials should have large surface areas to enhance gas adsorption,efficient conversion of gas input to detectable signals,and strong mechanical qualities.The exploration of gas-sensitive materials has covered diverse categories,such as organic semiconductor polymers,conductive organic compounds and polymers,metal oxides,metal-organic frameworks,and low-dimensional materials.The application of gas sensing technology holds significant promise in domains such as industrial safety,environmental monitoring,and medical diagnostics.This comprehensive review thoroughly examines recent progress,identifies prevailing technical challenges,and outlines prospects for gas detection technology utilizing field effect transistors.The primary aim is to provide a valuable reference for driving the development of the next generation of gas-sensitive monitoring and detection systems characterized by improved sensitivity,selectivity,and intelligence.展开更多
Amplification-free,highly sensitive,and specific nucleic acid detection is crucial for health monitoring and diagnosis.The type III CRISPR-Cas10 system,which provides viral immunity through CRISPRassociated protein ef...Amplification-free,highly sensitive,and specific nucleic acid detection is crucial for health monitoring and diagnosis.The type III CRISPR-Cas10 system,which provides viral immunity through CRISPRassociated protein effectors,enables a new amplification-free nucleic acid diagnostic tool.In this study,we develop a CRISPR-graphene field-effect transistors(GFETs)biosensor by combining the type III CRISPR-Cas10 system with GFETs for direct nucleic acid detection.This biosensor exploits the target RNA-activated continuous ss DNA cleavage activity of the d Csm3 CRISPR-Cas10 effector and the high charge density of a hairpin DNA reporter on the GFET channel to achieve label-free,amplification-free,highly sensitive,and specific RNA detection.The CRISPR-GFET biosensor exhibits excellent performance in detecting medium-length RNAs and miRNAs,with detection limits at the aM level and a broad linear range of 10^(-15)to 10^(-11)M for RNAs and 10^(-15)to 10^(-9)M for miRNAs.It shows high sensitivity in throat swabs and serum samples,distinguishing between healthy individuals(N=5)and breast cancer patients(N=6)without the need for extraction,purification,or amplification.This platform mitigates risks associated with nucleic acid amplification and cross-contamination,making it a versatile and scalable diagnostic tool for molecular diagnostics in human health.展开更多
Regioregular poly(3-hexylthio)thiopene(P3HTT) has emerged tremendous potential in organic electronic applications due to the strong noncovalent interactions from the sulfur atom linked to thiophene. However, P3HTT gen...Regioregular poly(3-hexylthio)thiopene(P3HTT) has emerged tremendous potential in organic electronic applications due to the strong noncovalent interactions from the sulfur atom linked to thiophene. However, P3HTT generally exhibits low charge mobility mostly due to poor solution processability attributed to dense arrangement of hexylthio side chain in polymer, which led to strong noncovalent interactions among sulfur atoms. To balance the nonvalent interaction and aggregation for P3HTT, herein, we systematically study the effect of hexylthio side chain content in polymer backbone on the structure and properties. A series of regioregular P3HTT-based homopolymers(P3HTT, P3HTT-50,P3HTT-33 and P3HTT-25) were prepared via Kumada catalyst transfer polycondensation method from a set of mono-, bi-, ter-and quarterthiophenes containing different contents of hexylthio side chain. The DFT calculation shows the planarity of polymers backbone could be improved through reducing the density of hexylthio side chain in polymer mainchain. And significant changes in their crystallinity, aggregation and optical properties were observed with the content of hexylthio side chain reducing. The P3HTT-33 displayed the highest field-effect transistor hole mobility of 2.83×10^(-2) cm^(2)·V^(-1)·s^(-1) resulting from a balance between the crystallinity and planarity. This study demonstrates modulating the content of hexylthio side chain in P3HTT is an effective strategy to optimize the opto-electronic properties of polymer obtaining excellent semiconductor device performance.展开更多
Organic semiconductor single crystals(OSSCs) have shown their promising potential in high-performance organic field-effect transistors(OFETs). The interfacial dielectric layers are critical in these OFETs as they not ...Organic semiconductor single crystals(OSSCs) have shown their promising potential in high-performance organic field-effect transistors(OFETs). The interfacial dielectric layers are critical in these OFETs as they not only govern the key semiconductor/dielectric interface quality but also determine the growth of OSSCs by their wetting properties. However, reported interfacial dielectric layers either need rigorous preparation processes, rely on certain surface chemistry reactions, or exhibit poor solvent resistance, which limits their applications in low-cost, large-area, monolithic fabrication of OSSC-based OFETs. In this work, polyethylene(PE) thin films and lamellar single crystals are utilized as the interfacial dielectric layers, providing solvent resistive but wettable surfaces that facilitate the crystallization of 6,13-bis(tri-isopropylsilylethynyl)pentacene(TIPS-PEN) and 6,13-bis(triisopropylsilylethynyl)-5,7,12,14-tetraazapentacene(TIPS-TAP). As evidenced by the presence of ambipolar behavior in TIPS-PEN single crystals and the high electron mobility(2.3 ± 0.34 cm^(2)V^(-1)s^(-1)) in TIPS-TAP single crystals, a general improvement on electron transport with PE interfacial dielectric layers is revealed, which likely associates with the chemically inertness of the saturated C-H bonds. With the advantages in both processing and device operation, the PE interfacial dielectric layer potentially offers a monolithic way for the enhancement of electron transport in solution-processed OSSC-based OFETs.展开更多
The instability of plasma waves in the channel of field-effect transistors will cause the electromagnetic waves with THz frequency.Based on a self-consistent quantum hydrodynamic model,the instability of THz plasmas w...The instability of plasma waves in the channel of field-effect transistors will cause the electromagnetic waves with THz frequency.Based on a self-consistent quantum hydrodynamic model,the instability of THz plasmas waves in the channel of graphene field-effect transistors has been investigated with external magnetic field and quantum effects.We analyzed the influence of weak magnetic fields,quantum effects,device size,and temperature on the instability of plasma waves under asymmetric boundary conditions numerically.The results show that the magnetic fields,quantum effects,and the thickness of the dielectric layer between the gate and the channel can increase the radiation frequency.Additionally,we observed that increase in temperature leads to a decrease in both oscillation frequency and instability increment.The numerical results and accompanying images obtained from our simulations provide support for the above conclusions.展开更多
Developing new polymeric semiconductors with excellent device performance is essential for organic electronics. Herein, we synthesized two new thiazoloisoindigo(Tz II)-based polymers, namely, P(Tz II-d Th-d Th) and P(...Developing new polymeric semiconductors with excellent device performance is essential for organic electronics. Herein, we synthesized two new thiazoloisoindigo(Tz II)-based polymers, namely, P(Tz II-d Th-d Th) and P(Tz II-d Th-d Tz), by copolymerizing thiophene-flanked Tz II with bithiophene and bithiazole, respectively. Owing to the more electron-deficient nature of bithiazole than bithiophene, P(Tz II-d Th-d Tz)possesses deeper LUMO/HOMO levels of-3.45/-5.47 e V than P(Tz II-d Th-d Th)(-3.34/-5.32 e V). The organic field-effect transistor(OFET) devices based on P(Tz II-d Th-d Th) exhibited p-type behaviors with an average hole mobility value as high as 1.43 cm^(2)·V^(-1)·s^(-1), while P(Tz II-d Th-d Tz)showed typical ambipolar characteristics with average hole and electron mobilities of 0.38 and 0.56 cm^(2)·V^(-1)·s^(-1). In addition, we compared the performances of both polymers with other Tz II-based polymers reported in our previous work, and showed that the charge carrier polarity can be manipulated by adjusting the number of the thiophene units between the acceptor unit. As the increase of the number of thiophene rings,charge carrier polarity shifts from electron-dominated ambipolar transport to hole-dominated ambipolar transport and then to unipolar hole transport in OFETs, which provides an effective molecular design strategy for further optimization of polymer OFET performance.展开更多
The integration between infrared detection and modern microelectronics offers unique opportunities for compact and high-resolution infrared imaging.However,silicon,the cornerstone of modern microelectronics,can only d...The integration between infrared detection and modern microelectronics offers unique opportunities for compact and high-resolution infrared imaging.However,silicon,the cornerstone of modern microelectronics,can only detect light within a limited wavelength range(<1100 nm)due to its bandgap of 1.12 eV,which restricts its utility in the infrared detection realm.Herein,a photo-driven fin field-effect transistor is presented,which breaks the spectral response constraint of conventional silicon detectors while achieving sensitive infrared detection.This device comprises a fin-shaped silicon channel for charge transport and a lead sulfide film for infrared light harvesting.The lead sulfide film wraps the silicon channel to form a“three-dimensional”infrared-sensitive gate,enabling the photovoltage generated at the lead sulfide-silicon junction to effectively modulate the channel conductance.At room temperature,this device realizes a broadband photodetection from visible(635 nm)to short-wave infrared regions(2700 nm),surpassing the working range of the regular indium gallium arsenide and germanium detectors.Furthermore,it exhibits low equivalent noise powers of 3.2×10^(-12) W·Hz^(-1/2) and 2.3×10^(-11) W·Hz^(-1/2) under 1550 nm and 2700 nm illumination,respectively.These results highlight the significant potential of photo-driven fin field-effect transistors in advancing uncooled silicon-based infrared detection.展开更多
This paper gives the short channel analytical theory of the bipolar field-effect transistor (BiFET) with the drift and diffusion currents separately computed in the analytical theory. As in the last-month paper whic...This paper gives the short channel analytical theory of the bipolar field-effect transistor (BiFET) with the drift and diffusion currents separately computed in the analytical theory. As in the last-month paper which represented the drift and diffusion current by the single electrochemical (potential-gradient) current, the two-dimensional transistor is partitioned into two sections, the source and drain sections, each can operate as the electron or hole emitter or collector under specific combinations of applied terminal voltages. Analytical solution is then obtained in the source and drain sections by separating the two-dimensional trap-free Shockley Equations into two one-dimensional equations parametrically coupled via the surface-electric-potential and by using electron current continuity and hole current continuity at the boundary between the emitter and collector sections. Total and the drift and diffusion components of the electron-channel and hole-channel currents and output and transfer conductances, and the electrical lengths of the two sections are computed and presented in graphs as a function of the D. C. terminal voltages for the model transistor with two identical and connected metal-oxide-silicon-gates (MOS-gates) on a thin pure-silicon base over practical ranges of thicknesses of the silicon base and gate oxide. Deviations of the two-section short-channel theory from the one-section long-channel theory are described.展开更多
This paper describes the short channel theory of the bipolar field-effect transistor (BiFET) by partitioning the transistor into two sections,the source and drain sections,each can operate as the electron or hole em...This paper describes the short channel theory of the bipolar field-effect transistor (BiFET) by partitioning the transistor into two sections,the source and drain sections,each can operate as the electron or hole emitter or collector under specific combinations of applied terminal voltages. Analytical solution is obtained in the source and drain sections by separating the two-dimensional trap-free Shockley Equations into two one-dimensional equations parametrically coupled via the surface-electric-potential and by using electron current continuity and hole current continuity at the boundary between the emitter and collector sections. Total and electron-hole-channel components of the output and transfer currents and conductances, and the electrical lengths of the two sections are computed and presented in graphs as a function of the D. C. terminal voltages for the model transistor with two identical and connected metal-oxide-silicon-gates (MOS-gates) on a thin pure-silicon base over practical ranges of thicknesses of the silicon base and gate oxide. Deviations of the long physical channel currents and conductances from those of the short electrical channels are reported.展开更多
This paper describes the foundation underlying the device physics and theory of the semiconductor field effect transistor which is applicable to any devices with two carrier species in an electric field. The importanc...This paper describes the foundation underlying the device physics and theory of the semiconductor field effect transistor which is applicable to any devices with two carrier species in an electric field. The importance of the boundary conditions on the device current-voltage characteristics is discussed. An illustration is given of the transfer DCIV characteristics computed for two boundary conditions,one on electrical potential,giving much higher drift-limited parabolic current through the intrinsic transistor, and the other on the electrochemical potentials, giving much lower injection-over-thebarrier diffusion-limited current with ideal 60mV per decade exponential subthreshold roll-off, simulating electron and hole contacts. The two-MOS-gates on thin pure-body silicon field-effect transistor is used as examples展开更多
The field-effect transistor is inherently bipolar, having simultaneously electron and hole surface and volume channels and currents. The channels and currents are controlled by one or more externally applied transvers...The field-effect transistor is inherently bipolar, having simultaneously electron and hole surface and volume channels and currents. The channels and currents are controlled by one or more externally applied transverse electric fields. It has been known as the unipolar field-effect transistor for 55-years since Shockley's 1952 invention,because the electron-current theory inevitably neglected the hole current from over-specified internal and boundary conditions, such as the electrical neutrality and the constant hole-electrochemical-potential, resulting in erroneous solutions of the internal and terminal electrical characteristics from the electron channel current alone, which are in gross error when the neglected hole current becomes comparable to the electron current, both in subthreshold and strong inversion. This report presents the general theory, that includes both electron and hole channels and currents. The rectangular ( x, y, z) parallelepiped transistors,uniform in the width direction (z-axis),with one or two MOS gates on thin and thick,and pure and impure base, are used to illustrate the two-dimensional effects and the correct internal and boundary conditions for the electric and the electron and hole electrochemical potentials. Complete analytical equations of the DC current-voltage characteristics of four common MOS transistor structures are derived without over-specification: the 1-gate on semi-infinite-thick impure-base (the traditional bulk transistor), the 1-gate on thin impure-silicon layer over oxide-insulated silicon bulk (SOI) ,the 1-gate on thin impure-silicon layer deposited on insulating glass (SOI TFT), and the 2-gates on thin pure-base (FinFETs).展开更多
This paper describes the bipolar field-effect transistor (BiFET) and its theory. Analytical solution is ob- tained from partitioning the two-dimensional transistor into two one-dimensional transistors. The analysis ...This paper describes the bipolar field-effect transistor (BiFET) and its theory. Analytical solution is ob- tained from partitioning the two-dimensional transistor into two one-dimensional transistors. The analysis employs the parametric surface-electric-potential and the electrochemical (quasi-Fermi) potential-gradient driving force to compute the current. Output and transfer D. C. current and conductance versus voltage are presented over practi- cal ranges of terminal D. C. voltages and device parameters. Electron and hole surface channel currents are pres- ent simultaneously, a new feature which could provide circuit functions in one physical transistor such as the CMOS inverter and SRAM memory.展开更多
This paper describes the drift-diffusion theory of the bipolar field-effect transistor (BiFET) with two identical and connected metal-oxide-silicon-gates (MOS-gates) on a thin-pure-base. Analytical solution is obt...This paper describes the drift-diffusion theory of the bipolar field-effect transistor (BiFET) with two identical and connected metal-oxide-silicon-gates (MOS-gates) on a thin-pure-base. Analytical solution is obtained by partitioning the two-dimensional transistor into two one-dimensional problems coupled by the parametric sur- face-electric-potential. Total and component output and transfer currents and conductances versus D. C. voltages from the drift-diffusion theory, and their deviations from the electrochemical (quasi-Fermi) potential-gradient theory,are presented over practical ranges of thicknesses of the silicon base and gate oxide. A substantial contri- bution from the longitudinal gradient of the square of the transverse electric field is shown.展开更多
The exploration and research of low-cost,environmentally friendly,and sustainable organic semiconductor materials are of immense significance in various fields,including electronics,optoelectronics,and energy conversi...The exploration and research of low-cost,environmentally friendly,and sustainable organic semiconductor materials are of immense significance in various fields,including electronics,optoelectronics,and energy conversion.Unfortunately,these semiconductors have almost poor charge transport properties,which range from∼10^(−4) cm^(2)·V^(−1)·s^(−1) to∼10^(−2) cm^(2)·V^(−1)·s^(−1).Vat orange 3,as one of these organic semiconductors,has great potential due to its highly conjugated structure.We obtain high-quality multilayered Vat orange 3 crystals with two-dimensional(2D)growth on h-BN surfaces with thickness of 10–100 nm using physical vapor transport.Raman’s results confirm the stability of the chemical structure of Vat orange 3 during growth.Furthermore,by leveraging the structural advantages of 2D materials,an organic field-effect transistor with a 2D vdW vertical heterostructure is further realized with h-BN encapsulation and multilayered graphene contact electrodes,resulting in an excellent transistor performance with On/Off ratio of 104 and high field-effect mobility of 0.14 cm^(2)·V^(−1)·s^(−1).Our results show the great potential of Vat orange 3 with 2D structures in future nano-electronic applications.Furthermore,we showcase an approach that integrates organic semiconductors with 2D materials,aiming to offer new insights into the study of organic semiconductors.展开更多
The compatibility of the gate dielectrics with semiconductors is vital for constructing efficient conducting channel for high charge transport.However,it is still a highly challenging mission to clearly clarify the re...The compatibility of the gate dielectrics with semiconductors is vital for constructing efficient conducting channel for high charge transport.However,it is still a highly challenging mission to clearly clarify the relationship between the dielectric layers and the chemical structure of semiconductors,especially vacuum-deposited small molecules.Here,interfacial molecular screening of polyimide(Kapton)dielectric in organic field-effect transistors(OFETs)is comprehensively studied.It is found that the semiconducting small molecules with alkyl side chains prefer to form a high-quality charge transport layer on polyimide(PI)dielectrics compared with the molecules without alkyl side chains.On this basis,the fabricated transistors could reach the mobility of 1.2 cm^(2) V^(−1)s^(−1) the molecule with alkyl side chains on bare PI dielectric.What is more,the compatible semiconductor and dielectric would further produce a low activation energy(E_(A))of 3.01 meV towards efficient charge transport even at low temperature(e.g.,100 K,0.9 cm^(2) V^(−1)s^(−1)).Our research provides a guiding scheme for the construction of high-performance thin-film field-effect transistors based on PI dielectric layer at room and low temperatures.展开更多
The previous report (XI) gave the electrochemical-potential theory of the Bipolar Field-Effect Transistors. This report (XII) gives the drift-diffusion theory. Both treat 1-gate and 2-gate, pure-base and impure-ba...The previous report (XI) gave the electrochemical-potential theory of the Bipolar Field-Effect Transistors. This report (XII) gives the drift-diffusion theory. Both treat 1-gate and 2-gate, pure-base and impure-base, and thin and thick base. Both utilize the surface and bulk potentials as the parametric variables to couple the voltage and current equations. In the present drift-diffusion theory, the very many current terms are identified by their mobility multiplier for the components of drift current,and the diffusivity multiplier for the components of the diffusion current. Complete analytical driftdiffusion equations are presented to give the DC current-voltage characteristics of four common MOS transistor structures. The drift current consists of four terms: 1-D (One-Dimensional) bulk charge drift term, 1-D carrier space-charge drift term,l-D Ex^2 (transverse electric field) drift term,2-D drift term. The diffusion current consists of three terms: 1-D bulk charge diffusion term,l-D carrier space-charge diffusion term,and 2-D diffusion term. The 1-D Ex^2 drift term was missed by all the existing transistor theories, and contributes significantly, as much as 25 % of the total current when the base layer is nearly pure. The 2-D terms come from longitudinal gradient of the longitudinal electric field,which scales as the square of the Debye to Channel length ratio, at 25nm channel length with nearly pure base, (LD/L)^2 = 10^6 but with impurity concentration of 10^18cm^-3 , (LD/L)^2 = 10^-2 .展开更多
This paper reports the intrinsic-structure DC characteristics computed from the analytical electrochemical current theory of the bipolar field-effect transistor (BiFET) with two identical MOS gates on nanometer-thic...This paper reports the intrinsic-structure DC characteristics computed from the analytical electrochemical current theory of the bipolar field-effect transistor (BiFET) with two identical MOS gates on nanometer-thick pure-base of silicon with no generation-recombination-trapping. Numerical solutions are rapidly obtained for the three potential variables,electrostatic and electron and hole electrochemical potentials,to give the electron and hole surface and volume channel currents,using our cross-link two-route or zig-zag one-route recursive iteration algorithms. Boundary conditions on the three potentials dominantly affect the intrinsic-structure DC characteristics,illustrated by examples covering 20-decades of current (10-22 to 10-2 A/Square at 400cm^2/(V · s) mobility for 1.5nm gate-oxide, and 30nm-thick pure-base). Aside from the domination of carrier space-charge-limited drift current in the strong surface channels,observed in the theory is also the classical drift current saturation due to physical pinch-off of an impure-base volume channel depicted by the 1952 Shockley junction-gate field-effect transistor theory,and its extension to complete cut-off of the pure-base volume channel,due to vanishing carrier screening by the few electron and hole carriers in the pure-base,with Debye length (25mm) much larger than device dimension (25nm).展开更多
The effects of low-κ and high-κ spacer were investigated on the novel tunnel dielectric based tunnel field-effect transistor(TD-FET) mainly based upon ultra-thin dielectric direct tunneling mechanism. Drive currents...The effects of low-κ and high-κ spacer were investigated on the novel tunnel dielectric based tunnel field-effect transistor(TD-FET) mainly based upon ultra-thin dielectric direct tunneling mechanism. Drive currents consist of direct tunneling current and band-to-band tunneling(BTBT) current. Meanwhile, tunneling position of the TD-FET differs from conventional tunnel-FET in which the electron and hole tunneling occur at intermediate rather than surface in channel(or source-channel junction under gate dielectric). The 2-D nature of TD-FET current flow is also discussed that the on-current is degraded with an increase in the spacer width. BTBT current will not begin to play part in tunneling current until gate voltage is 0.2 V. We clearly identify the influence of the tunneling dielectric layer and spacer electrostatic field on the device characteristics by numerical simulations. The inserted Si_3N_4 tunnel layer between P+ region and N+ region can significantly shorten the direct and band-to-band tunneling path, so a reduced subthreshold slope(Ss) and a high on-current can be achieved. Above all the ambipolar current is effectively suppressed, thus reducing off-current. TD-FET demonstrates excellent performance for low-power applications.展开更多
Two-dimensional(2D) materials have attracted extensive interest due to their excellent electrical, thermal,mechanical, and optical properties. Graphene has been one of the most explored 2D materials. However, its zero...Two-dimensional(2D) materials have attracted extensive interest due to their excellent electrical, thermal,mechanical, and optical properties. Graphene has been one of the most explored 2D materials. However, its zero band gap has limited its applications in electronic devices. Transition metal dichalcogenide(TMDC), another kind of 2D material,has a nonzero direct band gap(same charge carrier momentum in valence and conduction band) at monolayer state,promising for the efficient switching devices(e.g., field-effect transistors). This review mainly focuses on the recent advances in charge carrier mobility and the challenges to achieve high mobility in the electronic devices based on 2DTMDC materials and also includes an introduction of 2D materials along with the synthesis techniques. Finally, this review describes the possible methodology and future prospective to enhance the charge carrier mobility for electronic devices.展开更多
Organic field-effect transistors are of great importance to electronic devices.With the emergence of various preparation techniques for organic semiconductor materials,the device performance has been improved remarkab...Organic field-effect transistors are of great importance to electronic devices.With the emergence of various preparation techniques for organic semiconductor materials,the device performance has been improved remarkably.Among all of the organic materials,single crystals are potentially promising for high performances due to high purity and well-ordered molecular arrangement.Based on organic single crystals,alignment and patterning techniques are essential for practical industrial application of electronic devices.In this review,recently developed methods for crystal alignment and patterning are described.展开更多
基金supported by the National Key R&D Program of China(No.2023YFC3707201)the National Natural Science Foundation of China(No.52320105003)+2 种基金the Informatization Plan of Chinese Academy of Sciences(No.CAS-WX2023PY-0103)the Fundamental Research Funds for the Central Universities(No.E3ET1803)sponsored by the Alliance of International Science Organizations(ANSO)scholarship for young talents.
文摘A sensor,serving as a transducer,produces a quantifiable output in response to a predetermined input stimulus,which may be of a chemical or physical nature.The field of gas detection has experienced a substantial surge in research activity,attributable to the diverse functionalities and enhanced accessibility of advanced active materials.In this work,recent advances in gas sensors,specifically those utilizing Field Effect Transistors(FETs),are summarized,including device configurations,response characteristics,sensor materials,and application domains.In pursuing high-performance artificial olfactory systems,the evolution of FET gas sensors necessitates their synchronization with material advancements.These materials should have large surface areas to enhance gas adsorption,efficient conversion of gas input to detectable signals,and strong mechanical qualities.The exploration of gas-sensitive materials has covered diverse categories,such as organic semiconductor polymers,conductive organic compounds and polymers,metal oxides,metal-organic frameworks,and low-dimensional materials.The application of gas sensing technology holds significant promise in domains such as industrial safety,environmental monitoring,and medical diagnostics.This comprehensive review thoroughly examines recent progress,identifies prevailing technical challenges,and outlines prospects for gas detection technology utilizing field effect transistors.The primary aim is to provide a valuable reference for driving the development of the next generation of gas-sensitive monitoring and detection systems characterized by improved sensitivity,selectivity,and intelligence.
基金financially supported by the National Science and Technology Innovation 2030 Grants(2021ZD0201600)the National Key R&D Program of China(2021YFA0717000)+2 种基金the Intramural Joint Program Fund of State Key Laboratory of Microbial Technology(Project No.SKLMTIJP-2024-05)the Natural Science Foundation of Qingdao-Original exploration project(Project No.24-4-4-zrjj-139-jch)the National Natural Science Foundation of China(31771380)。
文摘Amplification-free,highly sensitive,and specific nucleic acid detection is crucial for health monitoring and diagnosis.The type III CRISPR-Cas10 system,which provides viral immunity through CRISPRassociated protein effectors,enables a new amplification-free nucleic acid diagnostic tool.In this study,we develop a CRISPR-graphene field-effect transistors(GFETs)biosensor by combining the type III CRISPR-Cas10 system with GFETs for direct nucleic acid detection.This biosensor exploits the target RNA-activated continuous ss DNA cleavage activity of the d Csm3 CRISPR-Cas10 effector and the high charge density of a hairpin DNA reporter on the GFET channel to achieve label-free,amplification-free,highly sensitive,and specific RNA detection.The CRISPR-GFET biosensor exhibits excellent performance in detecting medium-length RNAs and miRNAs,with detection limits at the aM level and a broad linear range of 10^(-15)to 10^(-11)M for RNAs and 10^(-15)to 10^(-9)M for miRNAs.It shows high sensitivity in throat swabs and serum samples,distinguishing between healthy individuals(N=5)and breast cancer patients(N=6)without the need for extraction,purification,or amplification.This platform mitigates risks associated with nucleic acid amplification and cross-contamination,making it a versatile and scalable diagnostic tool for molecular diagnostics in human health.
基金financially supported by the Science and Technology Commission of Shanghai Municipality (No.20JC1414900)the National Natural Science Foundation of China (No.52203005)the Science and Technology Commission of Shanghai Municipality (No.21ZR1401400)。
文摘Regioregular poly(3-hexylthio)thiopene(P3HTT) has emerged tremendous potential in organic electronic applications due to the strong noncovalent interactions from the sulfur atom linked to thiophene. However, P3HTT generally exhibits low charge mobility mostly due to poor solution processability attributed to dense arrangement of hexylthio side chain in polymer, which led to strong noncovalent interactions among sulfur atoms. To balance the nonvalent interaction and aggregation for P3HTT, herein, we systematically study the effect of hexylthio side chain content in polymer backbone on the structure and properties. A series of regioregular P3HTT-based homopolymers(P3HTT, P3HTT-50,P3HTT-33 and P3HTT-25) were prepared via Kumada catalyst transfer polycondensation method from a set of mono-, bi-, ter-and quarterthiophenes containing different contents of hexylthio side chain. The DFT calculation shows the planarity of polymers backbone could be improved through reducing the density of hexylthio side chain in polymer mainchain. And significant changes in their crystallinity, aggregation and optical properties were observed with the content of hexylthio side chain reducing. The P3HTT-33 displayed the highest field-effect transistor hole mobility of 2.83×10^(-2) cm^(2)·V^(-1)·s^(-1) resulting from a balance between the crystallinity and planarity. This study demonstrates modulating the content of hexylthio side chain in P3HTT is an effective strategy to optimize the opto-electronic properties of polymer obtaining excellent semiconductor device performance.
基金supported by the National Key Research and Development Program of China (Nos.2019YFE0116700,2019YFA0705900) funded by MOSTNational Natural Science Foundation of China (Nos.51873182, 52103231)+2 种基金Zhejiang Province Science and Technology Plan (No.2021C04012) funded by Zhejiang Provincial Department of Science and TechnologyShanxiZheda Institute of Advanced Materials and Chemical Engineering(No.2021SZ-FR003)the support by the Fundamental Research Funds for the Central Universities (No.226-2023-00113)。
文摘Organic semiconductor single crystals(OSSCs) have shown their promising potential in high-performance organic field-effect transistors(OFETs). The interfacial dielectric layers are critical in these OFETs as they not only govern the key semiconductor/dielectric interface quality but also determine the growth of OSSCs by their wetting properties. However, reported interfacial dielectric layers either need rigorous preparation processes, rely on certain surface chemistry reactions, or exhibit poor solvent resistance, which limits their applications in low-cost, large-area, monolithic fabrication of OSSC-based OFETs. In this work, polyethylene(PE) thin films and lamellar single crystals are utilized as the interfacial dielectric layers, providing solvent resistive but wettable surfaces that facilitate the crystallization of 6,13-bis(tri-isopropylsilylethynyl)pentacene(TIPS-PEN) and 6,13-bis(triisopropylsilylethynyl)-5,7,12,14-tetraazapentacene(TIPS-TAP). As evidenced by the presence of ambipolar behavior in TIPS-PEN single crystals and the high electron mobility(2.3 ± 0.34 cm^(2)V^(-1)s^(-1)) in TIPS-TAP single crystals, a general improvement on electron transport with PE interfacial dielectric layers is revealed, which likely associates with the chemically inertness of the saturated C-H bonds. With the advantages in both processing and device operation, the PE interfacial dielectric layer potentially offers a monolithic way for the enhancement of electron transport in solution-processed OSSC-based OFETs.
基金Project supported by the National Natural Science Foundation of China (Grant No.12065015)the Hongliu Firstlevel Discipline Construction Project of Lanzhou University of Technology。
文摘The instability of plasma waves in the channel of field-effect transistors will cause the electromagnetic waves with THz frequency.Based on a self-consistent quantum hydrodynamic model,the instability of THz plasmas waves in the channel of graphene field-effect transistors has been investigated with external magnetic field and quantum effects.We analyzed the influence of weak magnetic fields,quantum effects,device size,and temperature on the instability of plasma waves under asymmetric boundary conditions numerically.The results show that the magnetic fields,quantum effects,and the thickness of the dielectric layer between the gate and the channel can increase the radiation frequency.Additionally,we observed that increase in temperature leads to a decrease in both oscillation frequency and instability increment.The numerical results and accompanying images obtained from our simulations provide support for the above conclusions.
基金supported by the National Natural Science Foundation of China (Nos.22102086 and 22075105)the start-up funding from Jianghan University。
文摘Developing new polymeric semiconductors with excellent device performance is essential for organic electronics. Herein, we synthesized two new thiazoloisoindigo(Tz II)-based polymers, namely, P(Tz II-d Th-d Th) and P(Tz II-d Th-d Tz), by copolymerizing thiophene-flanked Tz II with bithiophene and bithiazole, respectively. Owing to the more electron-deficient nature of bithiazole than bithiophene, P(Tz II-d Th-d Tz)possesses deeper LUMO/HOMO levels of-3.45/-5.47 e V than P(Tz II-d Th-d Th)(-3.34/-5.32 e V). The organic field-effect transistor(OFET) devices based on P(Tz II-d Th-d Th) exhibited p-type behaviors with an average hole mobility value as high as 1.43 cm^(2)·V^(-1)·s^(-1), while P(Tz II-d Th-d Tz)showed typical ambipolar characteristics with average hole and electron mobilities of 0.38 and 0.56 cm^(2)·V^(-1)·s^(-1). In addition, we compared the performances of both polymers with other Tz II-based polymers reported in our previous work, and showed that the charge carrier polarity can be manipulated by adjusting the number of the thiophene units between the acceptor unit. As the increase of the number of thiophene rings,charge carrier polarity shifts from electron-dominated ambipolar transport to hole-dominated ambipolar transport and then to unipolar hole transport in OFETs, which provides an effective molecular design strategy for further optimization of polymer OFET performance.
基金supported by the National Key R&D Program of China(2017YFE0131900)the Natural Science Foundation of Chongqing,China(CSTB2023NSCQ-LZX0087)the National Natural Science Foundation of China(62204242,62005182).
文摘The integration between infrared detection and modern microelectronics offers unique opportunities for compact and high-resolution infrared imaging.However,silicon,the cornerstone of modern microelectronics,can only detect light within a limited wavelength range(<1100 nm)due to its bandgap of 1.12 eV,which restricts its utility in the infrared detection realm.Herein,a photo-driven fin field-effect transistor is presented,which breaks the spectral response constraint of conventional silicon detectors while achieving sensitive infrared detection.This device comprises a fin-shaped silicon channel for charge transport and a lead sulfide film for infrared light harvesting.The lead sulfide film wraps the silicon channel to form a“three-dimensional”infrared-sensitive gate,enabling the photovoltage generated at the lead sulfide-silicon junction to effectively modulate the channel conductance.At room temperature,this device realizes a broadband photodetection from visible(635 nm)to short-wave infrared regions(2700 nm),surpassing the working range of the regular indium gallium arsenide and germanium detectors.Furthermore,it exhibits low equivalent noise powers of 3.2×10^(-12) W·Hz^(-1/2) and 2.3×10^(-11) W·Hz^(-1/2) under 1550 nm and 2700 nm illumination,respectively.These results highlight the significant potential of photo-driven fin field-effect transistors in advancing uncooled silicon-based infrared detection.
文摘This paper gives the short channel analytical theory of the bipolar field-effect transistor (BiFET) with the drift and diffusion currents separately computed in the analytical theory. As in the last-month paper which represented the drift and diffusion current by the single electrochemical (potential-gradient) current, the two-dimensional transistor is partitioned into two sections, the source and drain sections, each can operate as the electron or hole emitter or collector under specific combinations of applied terminal voltages. Analytical solution is then obtained in the source and drain sections by separating the two-dimensional trap-free Shockley Equations into two one-dimensional equations parametrically coupled via the surface-electric-potential and by using electron current continuity and hole current continuity at the boundary between the emitter and collector sections. Total and the drift and diffusion components of the electron-channel and hole-channel currents and output and transfer conductances, and the electrical lengths of the two sections are computed and presented in graphs as a function of the D. C. terminal voltages for the model transistor with two identical and connected metal-oxide-silicon-gates (MOS-gates) on a thin pure-silicon base over practical ranges of thicknesses of the silicon base and gate oxide. Deviations of the two-section short-channel theory from the one-section long-channel theory are described.
文摘This paper describes the short channel theory of the bipolar field-effect transistor (BiFET) by partitioning the transistor into two sections,the source and drain sections,each can operate as the electron or hole emitter or collector under specific combinations of applied terminal voltages. Analytical solution is obtained in the source and drain sections by separating the two-dimensional trap-free Shockley Equations into two one-dimensional equations parametrically coupled via the surface-electric-potential and by using electron current continuity and hole current continuity at the boundary between the emitter and collector sections. Total and electron-hole-channel components of the output and transfer currents and conductances, and the electrical lengths of the two sections are computed and presented in graphs as a function of the D. C. terminal voltages for the model transistor with two identical and connected metal-oxide-silicon-gates (MOS-gates) on a thin pure-silicon base over practical ranges of thicknesses of the silicon base and gate oxide. Deviations of the long physical channel currents and conductances from those of the short electrical channels are reported.
文摘This paper describes the foundation underlying the device physics and theory of the semiconductor field effect transistor which is applicable to any devices with two carrier species in an electric field. The importance of the boundary conditions on the device current-voltage characteristics is discussed. An illustration is given of the transfer DCIV characteristics computed for two boundary conditions,one on electrical potential,giving much higher drift-limited parabolic current through the intrinsic transistor, and the other on the electrochemical potentials, giving much lower injection-over-thebarrier diffusion-limited current with ideal 60mV per decade exponential subthreshold roll-off, simulating electron and hole contacts. The two-MOS-gates on thin pure-body silicon field-effect transistor is used as examples
文摘The field-effect transistor is inherently bipolar, having simultaneously electron and hole surface and volume channels and currents. The channels and currents are controlled by one or more externally applied transverse electric fields. It has been known as the unipolar field-effect transistor for 55-years since Shockley's 1952 invention,because the electron-current theory inevitably neglected the hole current from over-specified internal and boundary conditions, such as the electrical neutrality and the constant hole-electrochemical-potential, resulting in erroneous solutions of the internal and terminal electrical characteristics from the electron channel current alone, which are in gross error when the neglected hole current becomes comparable to the electron current, both in subthreshold and strong inversion. This report presents the general theory, that includes both electron and hole channels and currents. The rectangular ( x, y, z) parallelepiped transistors,uniform in the width direction (z-axis),with one or two MOS gates on thin and thick,and pure and impure base, are used to illustrate the two-dimensional effects and the correct internal and boundary conditions for the electric and the electron and hole electrochemical potentials. Complete analytical equations of the DC current-voltage characteristics of four common MOS transistor structures are derived without over-specification: the 1-gate on semi-infinite-thick impure-base (the traditional bulk transistor), the 1-gate on thin impure-silicon layer over oxide-insulated silicon bulk (SOI) ,the 1-gate on thin impure-silicon layer deposited on insulating glass (SOI TFT), and the 2-gates on thin pure-base (FinFETs).
文摘This paper describes the bipolar field-effect transistor (BiFET) and its theory. Analytical solution is ob- tained from partitioning the two-dimensional transistor into two one-dimensional transistors. The analysis employs the parametric surface-electric-potential and the electrochemical (quasi-Fermi) potential-gradient driving force to compute the current. Output and transfer D. C. current and conductance versus voltage are presented over practi- cal ranges of terminal D. C. voltages and device parameters. Electron and hole surface channel currents are pres- ent simultaneously, a new feature which could provide circuit functions in one physical transistor such as the CMOS inverter and SRAM memory.
文摘This paper describes the drift-diffusion theory of the bipolar field-effect transistor (BiFET) with two identical and connected metal-oxide-silicon-gates (MOS-gates) on a thin-pure-base. Analytical solution is obtained by partitioning the two-dimensional transistor into two one-dimensional problems coupled by the parametric sur- face-electric-potential. Total and component output and transfer currents and conductances versus D. C. voltages from the drift-diffusion theory, and their deviations from the electrochemical (quasi-Fermi) potential-gradient theory,are presented over practical ranges of thicknesses of the silicon base and gate oxide. A substantial contri- bution from the longitudinal gradient of the square of the transverse electric field is shown.
基金supported by the National Natural Science Foundation of China(Grant Nos.U21A6004,62375160,62274180,and 12004389).
文摘The exploration and research of low-cost,environmentally friendly,and sustainable organic semiconductor materials are of immense significance in various fields,including electronics,optoelectronics,and energy conversion.Unfortunately,these semiconductors have almost poor charge transport properties,which range from∼10^(−4) cm^(2)·V^(−1)·s^(−1) to∼10^(−2) cm^(2)·V^(−1)·s^(−1).Vat orange 3,as one of these organic semiconductors,has great potential due to its highly conjugated structure.We obtain high-quality multilayered Vat orange 3 crystals with two-dimensional(2D)growth on h-BN surfaces with thickness of 10–100 nm using physical vapor transport.Raman’s results confirm the stability of the chemical structure of Vat orange 3 during growth.Furthermore,by leveraging the structural advantages of 2D materials,an organic field-effect transistor with a 2D vdW vertical heterostructure is further realized with h-BN encapsulation and multilayered graphene contact electrodes,resulting in an excellent transistor performance with On/Off ratio of 104 and high field-effect mobility of 0.14 cm^(2)·V^(−1)·s^(−1).Our results show the great potential of Vat orange 3 with 2D structures in future nano-electronic applications.Furthermore,we showcase an approach that integrates organic semiconductors with 2D materials,aiming to offer new insights into the study of organic semiconductors.
基金financial support from National Key Research and Development Program(Nos.2021YFA0717900,2022YFE0124200)National Natural Science Foundation of China(Nos.62004138,52273190,61905121,U2241221)Haihe Laboratory of Sustainable Chemical Transformations.
文摘The compatibility of the gate dielectrics with semiconductors is vital for constructing efficient conducting channel for high charge transport.However,it is still a highly challenging mission to clearly clarify the relationship between the dielectric layers and the chemical structure of semiconductors,especially vacuum-deposited small molecules.Here,interfacial molecular screening of polyimide(Kapton)dielectric in organic field-effect transistors(OFETs)is comprehensively studied.It is found that the semiconducting small molecules with alkyl side chains prefer to form a high-quality charge transport layer on polyimide(PI)dielectrics compared with the molecules without alkyl side chains.On this basis,the fabricated transistors could reach the mobility of 1.2 cm^(2) V^(−1)s^(−1) the molecule with alkyl side chains on bare PI dielectric.What is more,the compatible semiconductor and dielectric would further produce a low activation energy(E_(A))of 3.01 meV towards efficient charge transport even at low temperature(e.g.,100 K,0.9 cm^(2) V^(−1)s^(−1)).Our research provides a guiding scheme for the construction of high-performance thin-film field-effect transistors based on PI dielectric layer at room and low temperatures.
文摘The previous report (XI) gave the electrochemical-potential theory of the Bipolar Field-Effect Transistors. This report (XII) gives the drift-diffusion theory. Both treat 1-gate and 2-gate, pure-base and impure-base, and thin and thick base. Both utilize the surface and bulk potentials as the parametric variables to couple the voltage and current equations. In the present drift-diffusion theory, the very many current terms are identified by their mobility multiplier for the components of drift current,and the diffusivity multiplier for the components of the diffusion current. Complete analytical driftdiffusion equations are presented to give the DC current-voltage characteristics of four common MOS transistor structures. The drift current consists of four terms: 1-D (One-Dimensional) bulk charge drift term, 1-D carrier space-charge drift term,l-D Ex^2 (transverse electric field) drift term,2-D drift term. The diffusion current consists of three terms: 1-D bulk charge diffusion term,l-D carrier space-charge diffusion term,and 2-D diffusion term. The 1-D Ex^2 drift term was missed by all the existing transistor theories, and contributes significantly, as much as 25 % of the total current when the base layer is nearly pure. The 2-D terms come from longitudinal gradient of the longitudinal electric field,which scales as the square of the Debye to Channel length ratio, at 25nm channel length with nearly pure base, (LD/L)^2 = 10^6 but with impurity concentration of 10^18cm^-3 , (LD/L)^2 = 10^-2 .
文摘This paper reports the intrinsic-structure DC characteristics computed from the analytical electrochemical current theory of the bipolar field-effect transistor (BiFET) with two identical MOS gates on nanometer-thick pure-base of silicon with no generation-recombination-trapping. Numerical solutions are rapidly obtained for the three potential variables,electrostatic and electron and hole electrochemical potentials,to give the electron and hole surface and volume channel currents,using our cross-link two-route or zig-zag one-route recursive iteration algorithms. Boundary conditions on the three potentials dominantly affect the intrinsic-structure DC characteristics,illustrated by examples covering 20-decades of current (10-22 to 10-2 A/Square at 400cm^2/(V · s) mobility for 1.5nm gate-oxide, and 30nm-thick pure-base). Aside from the domination of carrier space-charge-limited drift current in the strong surface channels,observed in the theory is also the classical drift current saturation due to physical pinch-off of an impure-base volume channel depicted by the 1952 Shockley junction-gate field-effect transistor theory,and its extension to complete cut-off of the pure-base volume channel,due to vanishing carrier screening by the few electron and hole carriers in the pure-base,with Debye length (25mm) much larger than device dimension (25nm).
基金Projects(61574109,61204092)supported by the National Natural Science Foundation of China
文摘The effects of low-κ and high-κ spacer were investigated on the novel tunnel dielectric based tunnel field-effect transistor(TD-FET) mainly based upon ultra-thin dielectric direct tunneling mechanism. Drive currents consist of direct tunneling current and band-to-band tunneling(BTBT) current. Meanwhile, tunneling position of the TD-FET differs from conventional tunnel-FET in which the electron and hole tunneling occur at intermediate rather than surface in channel(or source-channel junction under gate dielectric). The 2-D nature of TD-FET current flow is also discussed that the on-current is degraded with an increase in the spacer width. BTBT current will not begin to play part in tunneling current until gate voltage is 0.2 V. We clearly identify the influence of the tunneling dielectric layer and spacer electrostatic field on the device characteristics by numerical simulations. The inserted Si_3N_4 tunnel layer between P+ region and N+ region can significantly shorten the direct and band-to-band tunneling path, so a reduced subthreshold slope(Ss) and a high on-current can be achieved. Above all the ambipolar current is effectively suppressed, thus reducing off-current. TD-FET demonstrates excellent performance for low-power applications.
基金funded by Australian Research Council discovery project DP140103041Future Fellowship FT160100205
文摘Two-dimensional(2D) materials have attracted extensive interest due to their excellent electrical, thermal,mechanical, and optical properties. Graphene has been one of the most explored 2D materials. However, its zero band gap has limited its applications in electronic devices. Transition metal dichalcogenide(TMDC), another kind of 2D material,has a nonzero direct band gap(same charge carrier momentum in valence and conduction band) at monolayer state,promising for the efficient switching devices(e.g., field-effect transistors). This review mainly focuses on the recent advances in charge carrier mobility and the challenges to achieve high mobility in the electronic devices based on 2DTMDC materials and also includes an introduction of 2D materials along with the synthesis techniques. Finally, this review describes the possible methodology and future prospective to enhance the charge carrier mobility for electronic devices.
基金supported by the 973 Program(No.2014CB643503)National Natural Science Foundation of China(Nos.51373150,51461165301)Zhejiang Province Natural Science Foundation(No.LZ13E030002)
文摘Organic field-effect transistors are of great importance to electronic devices.With the emergence of various preparation techniques for organic semiconductor materials,the device performance has been improved remarkably.Among all of the organic materials,single crystals are potentially promising for high performances due to high purity and well-ordered molecular arrangement.Based on organic single crystals,alignment and patterning techniques are essential for practical industrial application of electronic devices.In this review,recently developed methods for crystal alignment and patterning are described.