The motivation for this study is that the quality of deep fakes is constantly improving,which leads to the need to develop new methods for their detection.The proposed Customized Convolutional Neural Network method in...The motivation for this study is that the quality of deep fakes is constantly improving,which leads to the need to develop new methods for their detection.The proposed Customized Convolutional Neural Network method involves extracting structured data from video frames using facial landmark detection,which is then used as input to the CNN.The customized Convolutional Neural Network method is the date augmented-based CNN model to generate‘fake data’or‘fake images’.This study was carried out using Python and its libraries.We used 242 films from the dataset gathered by the Deep Fake Detection Challenge,of which 199 were made up and the remaining 53 were real.Ten seconds were allotted for each video.There were 318 videos used in all,199 of which were fake and 119 of which were real.Our proposedmethod achieved a testing accuracy of 91.47%,loss of 0.342,and AUC score of 0.92,outperforming two alternative approaches,CNN and MLP-CNN.Furthermore,our method succeeded in greater accuracy than contemporary models such as XceptionNet,Meso-4,EfficientNet-BO,MesoInception-4,VGG-16,and DST-Net.The novelty of this investigation is the development of a new Convolutional Neural Network(CNN)learning model that can accurately detect deep fake face photos.展开更多
Deep learning is a practical and efficient technique that has been used extensively in many domains. Using deep learning technology, deepfakes create fake images of a person that people cannot distinguish from the rea...Deep learning is a practical and efficient technique that has been used extensively in many domains. Using deep learning technology, deepfakes create fake images of a person that people cannot distinguish from the real one. Recently, many researchers have focused on understanding how deepkakes work and detecting using deep learning approaches. This paper introduces an explainable deepfake framework for images creation and classification. The framework consists of three main parts: the first approach is called Instant ID which is used to create deepfacke images from the original one;the second approach called Xception classifies the real and deepfake images;the third approach called Local Interpretable Model (LIME) provides a method for interpreting the predictions of any machine learning model in a local and interpretable manner. Our study proposes deepfake approach that achieves 100% precision and 100% accuracy for deepfake creation and classification. Furthermore, the results highlight the superior performance of the proposed model in deep fake creation and classification.展开更多
Deep learning-based approaches are applied successfully in manyfields such as deepFake identification,big data analysis,voice recognition,and image recognition.Deepfake is the combination of deep learning in fake creati...Deep learning-based approaches are applied successfully in manyfields such as deepFake identification,big data analysis,voice recognition,and image recognition.Deepfake is the combination of deep learning in fake creation,which states creating a fake image or video with the help of artificial intelligence for political abuse,spreading false information,and pornography.The artificial intel-ligence technique has a wide demand,increasing the problems related to privacy,security,and ethics.This paper has analyzed the features related to the computer vision of digital content to determine its integrity.This method has checked the computer vision features of the image frames using the fuzzy clustering feature extraction method.By the proposed deep belief network with loss handling,the manipulation of video/image is found by means of a pairwise learning approach.This proposed approach has improved the accuracy of the detection rate by 98%on various datasets.展开更多
The emergence of deep fake videos in recent years has made image falsification a real danger.A person’s face and emotions are deep-faked in a video or speech and are substituted with a different face or voice employi...The emergence of deep fake videos in recent years has made image falsification a real danger.A person’s face and emotions are deep-faked in a video or speech and are substituted with a different face or voice employing deep learning to analyze speech or emotional content.Because of how clever these videos are frequently,Manipulation is challenging to spot.Social media are the most frequent and dangerous targets since they are weak outlets that are open to extortion or slander a human.In earlier times,it was not so easy to alter the videos,which required expertise in the domain and time.Nowadays,the generation of fake videos has become easier and with a high level of realism in the video.Deepfakes are forgeries and altered visual data that appear in still photos or video footage.Numerous automatic identification systems have been developed to solve this issue,however they are constrained to certain datasets and performpoorly when applied to different datasets.This study aims to develop an ensemble learning model utilizing a convolutional neural network(CNN)to handle deepfakes or Face2Face.We employed ensemble learning,a technique combining many classifiers to achieve higher prediction performance than a single classifier,boosting themodel’s accuracy.The performance of the generated model is evaluated on Face Forensics.This work is about building a new powerful model for automatically identifying deep fake videos with the DeepFake-Detection-Challenges(DFDC)dataset.We test our model using the DFDC,one of the most difficult datasets and get an accuracy of 96%.展开更多
Deep learning is an effective and useful technique that has been widely applied in a variety of fields, including computer vision, machine vision, and natural language processing. Deepfakes uses deep learning technolo...Deep learning is an effective and useful technique that has been widely applied in a variety of fields, including computer vision, machine vision, and natural language processing. Deepfakes uses deep learning technology to manipulate images and videos of a person that humans cannot differentiate them from the real one. In recent years, many studies have been conducted to understand how deepfakes work and many approaches based on deep learning have been introduced to detect deepfakes videos or images. In this paper, we conduct a comprehensive review of deepfakes creation and detection technologies using deep learning approaches. In addition, we give a thorough analysis of various technologies and their application in deepfakes detection. Our study will be beneficial for researchers in this field as it will cover the recent state-of-art methods that discover deepfakes videos or images in social contents. In addition, it will help comparison with the existing works because of the detailed description of the latest methods and dataset used in this domain.展开更多
Cyber-Physical Networks(CPN)are comprehensive systems that integrate information and physical domains,and are widely used in various fields such as online social networking,smart grids,and the Internet of Vehicles(IoV...Cyber-Physical Networks(CPN)are comprehensive systems that integrate information and physical domains,and are widely used in various fields such as online social networking,smart grids,and the Internet of Vehicles(IoV).With the increasing popularity of digital photography and Internet technology,more and more users are sharing images on CPN.However,many images are shared without any privacy processing,exposing hidden privacy risks and making sensitive content easily accessible to Artificial Intelligence(AI)algorithms.Existing image sharing methods lack fine-grained image sharing policies and cannot protect user privacy.To address this issue,we propose a social relationship-driven privacy customization protection model for publishers and co-photographers.We construct a heterogeneous social information network centered on social relationships,introduce a user intimacy evaluation method with time decay,and evaluate privacy levels considering user interest similarity.To protect user privacy while maintaining image appreciation,we design a lightweight face-swapping algorithm based on Generative Adversarial Network(GAN)to swap faces that need to be protected.Our proposed method minimizes the loss of image utility while satisfying privacy requirements,as shown by extensive theoretical and simulation analyses.展开更多
基金Science and Technology Funds from the Liaoning Education Department(Serial Number:LJKZ0104).
文摘The motivation for this study is that the quality of deep fakes is constantly improving,which leads to the need to develop new methods for their detection.The proposed Customized Convolutional Neural Network method involves extracting structured data from video frames using facial landmark detection,which is then used as input to the CNN.The customized Convolutional Neural Network method is the date augmented-based CNN model to generate‘fake data’or‘fake images’.This study was carried out using Python and its libraries.We used 242 films from the dataset gathered by the Deep Fake Detection Challenge,of which 199 were made up and the remaining 53 were real.Ten seconds were allotted for each video.There were 318 videos used in all,199 of which were fake and 119 of which were real.Our proposedmethod achieved a testing accuracy of 91.47%,loss of 0.342,and AUC score of 0.92,outperforming two alternative approaches,CNN and MLP-CNN.Furthermore,our method succeeded in greater accuracy than contemporary models such as XceptionNet,Meso-4,EfficientNet-BO,MesoInception-4,VGG-16,and DST-Net.The novelty of this investigation is the development of a new Convolutional Neural Network(CNN)learning model that can accurately detect deep fake face photos.
文摘Deep learning is a practical and efficient technique that has been used extensively in many domains. Using deep learning technology, deepfakes create fake images of a person that people cannot distinguish from the real one. Recently, many researchers have focused on understanding how deepkakes work and detecting using deep learning approaches. This paper introduces an explainable deepfake framework for images creation and classification. The framework consists of three main parts: the first approach is called Instant ID which is used to create deepfacke images from the original one;the second approach called Xception classifies the real and deepfake images;the third approach called Local Interpretable Model (LIME) provides a method for interpreting the predictions of any machine learning model in a local and interpretable manner. Our study proposes deepfake approach that achieves 100% precision and 100% accuracy for deepfake creation and classification. Furthermore, the results highlight the superior performance of the proposed model in deep fake creation and classification.
文摘Deep learning-based approaches are applied successfully in manyfields such as deepFake identification,big data analysis,voice recognition,and image recognition.Deepfake is the combination of deep learning in fake creation,which states creating a fake image or video with the help of artificial intelligence for political abuse,spreading false information,and pornography.The artificial intel-ligence technique has a wide demand,increasing the problems related to privacy,security,and ethics.This paper has analyzed the features related to the computer vision of digital content to determine its integrity.This method has checked the computer vision features of the image frames using the fuzzy clustering feature extraction method.By the proposed deep belief network with loss handling,the manipulation of video/image is found by means of a pairwise learning approach.This proposed approach has improved the accuracy of the detection rate by 98%on various datasets.
文摘The emergence of deep fake videos in recent years has made image falsification a real danger.A person’s face and emotions are deep-faked in a video or speech and are substituted with a different face or voice employing deep learning to analyze speech or emotional content.Because of how clever these videos are frequently,Manipulation is challenging to spot.Social media are the most frequent and dangerous targets since they are weak outlets that are open to extortion or slander a human.In earlier times,it was not so easy to alter the videos,which required expertise in the domain and time.Nowadays,the generation of fake videos has become easier and with a high level of realism in the video.Deepfakes are forgeries and altered visual data that appear in still photos or video footage.Numerous automatic identification systems have been developed to solve this issue,however they are constrained to certain datasets and performpoorly when applied to different datasets.This study aims to develop an ensemble learning model utilizing a convolutional neural network(CNN)to handle deepfakes or Face2Face.We employed ensemble learning,a technique combining many classifiers to achieve higher prediction performance than a single classifier,boosting themodel’s accuracy.The performance of the generated model is evaluated on Face Forensics.This work is about building a new powerful model for automatically identifying deep fake videos with the DeepFake-Detection-Challenges(DFDC)dataset.We test our model using the DFDC,one of the most difficult datasets and get an accuracy of 96%.
文摘Deep learning is an effective and useful technique that has been widely applied in a variety of fields, including computer vision, machine vision, and natural language processing. Deepfakes uses deep learning technology to manipulate images and videos of a person that humans cannot differentiate them from the real one. In recent years, many studies have been conducted to understand how deepfakes work and many approaches based on deep learning have been introduced to detect deepfakes videos or images. In this paper, we conduct a comprehensive review of deepfakes creation and detection technologies using deep learning approaches. In addition, we give a thorough analysis of various technologies and their application in deepfakes detection. Our study will be beneficial for researchers in this field as it will cover the recent state-of-art methods that discover deepfakes videos or images in social contents. In addition, it will help comparison with the existing works because of the detailed description of the latest methods and dataset used in this domain.
基金supported in part by National Natural Science Foundation of China(62271096,U20A20157)Natural Science Foundation of Chongqing,China(cstc2020jcyj-zdxmX0024,CSTB2022NSCQMSX0600)+5 种基金University Innovation Research Group of Chongqing(CXQT20017)Program for Innovation Team Building at Institutions of Higher Education in Chongqing(CXTDX201601020)Science and Technology Research Program of Chongqing Municipal Education Commission(KJQN202000626)Youth Innovation Group Support Program of ICE Discipline of CQUPT(SCIE-QN-2022-04)the Science and Technology Research Program of Chongqing Municipal Education Commission under Grant KJQN202000626Chongqing Municipal Technology Innovation and Application Development Special Key Project(cstc2020jscx-dxwtBX0053)。
文摘Cyber-Physical Networks(CPN)are comprehensive systems that integrate information and physical domains,and are widely used in various fields such as online social networking,smart grids,and the Internet of Vehicles(IoV).With the increasing popularity of digital photography and Internet technology,more and more users are sharing images on CPN.However,many images are shared without any privacy processing,exposing hidden privacy risks and making sensitive content easily accessible to Artificial Intelligence(AI)algorithms.Existing image sharing methods lack fine-grained image sharing policies and cannot protect user privacy.To address this issue,we propose a social relationship-driven privacy customization protection model for publishers and co-photographers.We construct a heterogeneous social information network centered on social relationships,introduce a user intimacy evaluation method with time decay,and evaluate privacy levels considering user interest similarity.To protect user privacy while maintaining image appreciation,we design a lightweight face-swapping algorithm based on Generative Adversarial Network(GAN)to swap faces that need to be protected.Our proposed method minimizes the loss of image utility while satisfying privacy requirements,as shown by extensive theoretical and simulation analyses.