The activation of adsorbed CO is an important step in CO hydrogenation. The results from TPSR of pre-adsorbed CO with H2 and syngas suggested that the presence of H2 increased the amount of CO adsorption and accelerat...The activation of adsorbed CO is an important step in CO hydrogenation. The results from TPSR of pre-adsorbed CO with H2 and syngas suggested that the presence of H2 increased the amount of CO adsorption and accelerated CO dissociation. The H2 was adsorbed first, and activated to form H* over metal sites, then reacted with carbonaceous species. The oxygen species for CO2 formation in the presence of hydrogen was mostly OH^*, which reacted with adsorbed CO subsequently via CO^*+OH^* → CO2^*+H^*; however, the direct CO dissociation was not excluded in CO hydrogenation. The dissociation of C-O bond in the presence of H2 proceeded by a concerted mechanism, which assisted the Boudourd reaction of adsorbed CO on the surface via CO^*+2H^* → CH^*+OH^*. The formation of the surface species (CH) from adsorbed CO proceeded as indicated with the participation of surface hydrogen, was favored in the initial step of the Fischer-Tropsch synthesis.展开更多
As a potential ferromagnetic shape memory alloy, Ni-Co-Al has excellent mechanical properties, large ma gentic-field-induced strain and high martensitic transformation temperature. The relationship between microstruct...As a potential ferromagnetic shape memory alloy, Ni-Co-Al has excellent mechanical properties, large ma gentic-field-induced strain and high martensitic transformation temperature. The relationship between microstructure and performance (mechanical and magnetic properties) of Ni-Co-Al with different Co/Al atomic ratios (RCo/Al) was investigated. Samples exhibit β and γ dual-phase structure. The γ phase grows coarse and the volume fraction of γ phase increases with the rise of RCo/Al. Besides, sample with high amount of γ phase content has smaller βgrains ow- ing to the pinning effect of γ phase. The martensite, transformed from β phase, is tetragonal L10 structure with a (111) twinning plane. The martensitic transformation temperature of samples ascends with increasing R co/Al owing to more Co embedded into the cell, which makes the valence electron concentration (e/a) of system rise. The satura- tion magnetization (Ms) of samples increases as Rco/Al rises because Co-rich 7 phase has excellent magnetic property. Meanwhile, both compressive and micro-hardness tests reveal that the samples containing more γ phase have excel- lent ductility due to the intrinsic good ductility nature of γ phase.展开更多
The purpose of this study was to investigate the effect of preadsorbed CO at different temperatures, calcination temperatures, the combined influence of reduction temperature and time, and pretreatment using hydrogen ...The purpose of this study was to investigate the effect of preadsorbed CO at different temperatures, calcination temperatures, the combined influence of reduction temperature and time, and pretreatment using hydrogen or syngas as reduction agents on the F-T synthesis (FTS) activity and selectivity of Co/Al2O3 catalyst. The reactivity of the carbon species at higher preadsorption temperature with H2 in TPSR decreased, whereas the carbon-containing species showed higher reactivity over Co/Al2O3 catalyst with low calcination temperature. This agreed well with the order of catalytic activity for F-T synthesis on this catalyst. The catalytic activity of the catalyst varied with reduction temperature and time remarkably. CODEX optimization gave an optimum reduction temperature of 756 K and reduction time of 6.2 h and estimated C5+ yield perfectly. The pretreatment of Co/Al2O3 catalyst with different reduction agents (hydrogen or syngas) showed important influences on the catalytic performance. A high CO conversion and C5+ yield were obtained on the catalyst reduced by hydrogen, whereas methane selectivity on the catalyst reduced by syngas was much higher than that on the catalyst reduced by hydrogen.展开更多
s: Three kinds of Co sites,i.e. tetrahedral(Co[o]), cobalt cobalt sites and bulk Co3O4 are characterized by infrared spechoscopy of CO and NO adsothed on reduced and sueded Co/Al2O3 at room temperature.
The preparation of self-assembling organomodified Co/Al-layered double hydroxide(LDH)via one-step route was studied. A common surfactant,sodium dodecylbenzenesulfonate(DBS),was employed as an organic modifier.The beha...The preparation of self-assembling organomodified Co/Al-layered double hydroxide(LDH)via one-step route was studied. A common surfactant,sodium dodecylbenzenesulfonate(DBS),was employed as an organic modifier.The behavior and structure of self-assembled intercalated organic Co/Al-LDH were investigated by FTIR,SEM,WAXS,element analysis and TGA.Based upon the WAXS results and calculation by Bragg equation,the interlayer distance(d value)for organic Co/Al-LDH is enlarged from 0.75 nm to 3.10 nm,showing that the self-assembling behavior has been carried out successfully.Considering the observation from SEM, the product shows the morphology of organic Co/Al-LDH of a layered structure.In addition,FTIR,element analysis and TGA analysis show that the modifier is intercalated into the gallery of the Co/Al-LDH.Since organic modification for nanofiller is deemed to be necessary before applying it into polymer,the successful preparation of organomodified Co/Al-LDH will be significantly beneficial to the preparation and investigation of novel polymer/LDH nanocomposite.展开更多
基金The National Key Project for Basic Research of China(973 Project)(No.2005CB221402)China National Petroleum Corporation
文摘The activation of adsorbed CO is an important step in CO hydrogenation. The results from TPSR of pre-adsorbed CO with H2 and syngas suggested that the presence of H2 increased the amount of CO adsorption and accelerated CO dissociation. The H2 was adsorbed first, and activated to form H* over metal sites, then reacted with carbonaceous species. The oxygen species for CO2 formation in the presence of hydrogen was mostly OH^*, which reacted with adsorbed CO subsequently via CO^*+OH^* → CO2^*+H^*; however, the direct CO dissociation was not excluded in CO hydrogenation. The dissociation of C-O bond in the presence of H2 proceeded by a concerted mechanism, which assisted the Boudourd reaction of adsorbed CO on the surface via CO^*+2H^* → CH^*+OH^*. The formation of the surface species (CH) from adsorbed CO proceeded as indicated with the participation of surface hydrogen, was favored in the initial step of the Fischer-Tropsch synthesis.
文摘As a potential ferromagnetic shape memory alloy, Ni-Co-Al has excellent mechanical properties, large ma gentic-field-induced strain and high martensitic transformation temperature. The relationship between microstructure and performance (mechanical and magnetic properties) of Ni-Co-Al with different Co/Al atomic ratios (RCo/Al) was investigated. Samples exhibit β and γ dual-phase structure. The γ phase grows coarse and the volume fraction of γ phase increases with the rise of RCo/Al. Besides, sample with high amount of γ phase content has smaller βgrains ow- ing to the pinning effect of γ phase. The martensite, transformed from β phase, is tetragonal L10 structure with a (111) twinning plane. The martensitic transformation temperature of samples ascends with increasing R co/Al owing to more Co embedded into the cell, which makes the valence electron concentration (e/a) of system rise. The satura- tion magnetization (Ms) of samples increases as Rco/Al rises because Co-rich 7 phase has excellent magnetic property. Meanwhile, both compressive and micro-hardness tests reveal that the samples containing more γ phase have excel- lent ductility due to the intrinsic good ductility nature of γ phase.
基金The National Basic Research Program of China (973 Program) (No. 2005CB221402)China National Petroleum Corporation
文摘The purpose of this study was to investigate the effect of preadsorbed CO at different temperatures, calcination temperatures, the combined influence of reduction temperature and time, and pretreatment using hydrogen or syngas as reduction agents on the F-T synthesis (FTS) activity and selectivity of Co/Al2O3 catalyst. The reactivity of the carbon species at higher preadsorption temperature with H2 in TPSR decreased, whereas the carbon-containing species showed higher reactivity over Co/Al2O3 catalyst with low calcination temperature. This agreed well with the order of catalytic activity for F-T synthesis on this catalyst. The catalytic activity of the catalyst varied with reduction temperature and time remarkably. CODEX optimization gave an optimum reduction temperature of 756 K and reduction time of 6.2 h and estimated C5+ yield perfectly. The pretreatment of Co/Al2O3 catalyst with different reduction agents (hydrogen or syngas) showed important influences on the catalytic performance. A high CO conversion and C5+ yield were obtained on the catalyst reduced by hydrogen, whereas methane selectivity on the catalyst reduced by syngas was much higher than that on the catalyst reduced by hydrogen.
文摘s: Three kinds of Co sites,i.e. tetrahedral(Co[o]), cobalt cobalt sites and bulk Co3O4 are characterized by infrared spechoscopy of CO and NO adsothed on reduced and sueded Co/Al2O3 at room temperature.
基金Project(50703026)supported by the National Natural Science Foundation of Chinaproject(F/4285-1)supported by International Foundation for Science(IFS)+1 种基金project(20080440182,200902615)supported by China Postdoctoral Science Foundationproject supported by vip-Scientist Research Fellowship granted by Leibniz Institute of Polymer Research Dresden,Germany
文摘The preparation of self-assembling organomodified Co/Al-layered double hydroxide(LDH)via one-step route was studied. A common surfactant,sodium dodecylbenzenesulfonate(DBS),was employed as an organic modifier.The behavior and structure of self-assembled intercalated organic Co/Al-LDH were investigated by FTIR,SEM,WAXS,element analysis and TGA.Based upon the WAXS results and calculation by Bragg equation,the interlayer distance(d value)for organic Co/Al-LDH is enlarged from 0.75 nm to 3.10 nm,showing that the self-assembling behavior has been carried out successfully.Considering the observation from SEM, the product shows the morphology of organic Co/Al-LDH of a layered structure.In addition,FTIR,element analysis and TGA analysis show that the modifier is intercalated into the gallery of the Co/Al-LDH.Since organic modification for nanofiller is deemed to be necessary before applying it into polymer,the successful preparation of organomodified Co/Al-LDH will be significantly beneficial to the preparation and investigation of novel polymer/LDH nanocomposite.