Although computer capabilities have been improved significantly, a large-scale virtual reality (VR) system demands much more in terms of memory and computation than the current computer systems can offer. This paper...Although computer capabilities have been improved significantly, a large-scale virtual reality (VR) system demands much more in terms of memory and computation than the current computer systems can offer. This paper discusses two important issues related to VR performance and applications in building navigation. These are dynamic loading of models based on cell segmentation for the optimal VR operation, and the route optimization based on path planning for easy navigation. The VR model of engineering and information technology complex (EITC) building at the University of Manitoba is built as an example to show the feasibility of the proposed methods. The reality, enhanced by three-dimensional (3D) real-time interactivity and visualization, leads navigators into a state of the virtual building immersion.展开更多
After the integration of petrographic study, geothermobarometry and Gibbs method, the synthetic P-T paths for the rocks from different geological profiles in the North Qilian, China, have been derived. The composite P...After the integration of petrographic study, geothermobarometry and Gibbs method, the synthetic P-T paths for the rocks from different geological profiles in the North Qilian, China, have been derived. The composite P-T paths from different methods indicate that all the high-pressure rocks in the Qilian area recorded P-T paths with clockwise loops starting at the blueschist facies, later reaching peak metamorphism at the blueschist facies, eclogite fades or epidote-amphibolite facies and ending up with the greenschist facies. The incremental Ar-Ar dating shows that the plateau ages for the high-pressure rocks range from 410 to 443 Ma. The plateau ages could be used as a minimum age constraint for the subduction that resulted in the formation of these high-pressure rocks in the Qilian area. It is proposed that the late-stage decompressional and cooling P-T paths with ends at the greenschist facies for these high-pressure rocks probably reflect the uplift process which could occur after shifting the arc-trench tectonic system to the system of continental orogenic belts. The retrograde paths for the high-pressure rocks in the North Qilian tectonic belt are characterized by dramatic decompression with slight cooling, which suggests very rapid exhumation. Petrography supports that the mountain-building for the Qilian mountain range could undergo a very fast process which caused rapid uplift and denudation.展开更多
传统的机器人定位导航方法在复杂建筑环境中存在精度不高、依赖传感器严重、无法有效处理动态障碍物等问题,导致其在实际应用中难以达到预期效果。为解决这些问题,引入了建筑信息模型(building information modeling,BIM)技术,借助BIM...传统的机器人定位导航方法在复杂建筑环境中存在精度不高、依赖传感器严重、无法有效处理动态障碍物等问题,导致其在实际应用中难以达到预期效果。为解决这些问题,引入了建筑信息模型(building information modeling,BIM)技术,借助BIM的几何和语义信息支持,在复杂环境中辅助机器人定位导航,为机器人提供更精确的环境感知和最优路径规划,减少与环境构件的碰撞风险,并提升任务执行的精准度和效率。比较论述了BIM技术在机器人定位、建图、路径规划等方面的应用现状,分析了其在建筑环境中的应用优势和挑战,并展望了未来在智能建筑和机器人智能化领域的应用前景。展开更多
基金supported by Discovery Grants of National Science and Engineering Research Council of Canada (NSERC) and Faculty of Engineering at University of Manitoba
文摘Although computer capabilities have been improved significantly, a large-scale virtual reality (VR) system demands much more in terms of memory and computation than the current computer systems can offer. This paper discusses two important issues related to VR performance and applications in building navigation. These are dynamic loading of models based on cell segmentation for the optimal VR operation, and the route optimization based on path planning for easy navigation. The VR model of engineering and information technology complex (EITC) building at the University of Manitoba is built as an example to show the feasibility of the proposed methods. The reality, enhanced by three-dimensional (3D) real-time interactivity and visualization, leads navigators into a state of the virtual building immersion.
文摘After the integration of petrographic study, geothermobarometry and Gibbs method, the synthetic P-T paths for the rocks from different geological profiles in the North Qilian, China, have been derived. The composite P-T paths from different methods indicate that all the high-pressure rocks in the Qilian area recorded P-T paths with clockwise loops starting at the blueschist facies, later reaching peak metamorphism at the blueschist facies, eclogite fades or epidote-amphibolite facies and ending up with the greenschist facies. The incremental Ar-Ar dating shows that the plateau ages for the high-pressure rocks range from 410 to 443 Ma. The plateau ages could be used as a minimum age constraint for the subduction that resulted in the formation of these high-pressure rocks in the Qilian area. It is proposed that the late-stage decompressional and cooling P-T paths with ends at the greenschist facies for these high-pressure rocks probably reflect the uplift process which could occur after shifting the arc-trench tectonic system to the system of continental orogenic belts. The retrograde paths for the high-pressure rocks in the North Qilian tectonic belt are characterized by dramatic decompression with slight cooling, which suggests very rapid exhumation. Petrography supports that the mountain-building for the Qilian mountain range could undergo a very fast process which caused rapid uplift and denudation.
文摘传统的机器人定位导航方法在复杂建筑环境中存在精度不高、依赖传感器严重、无法有效处理动态障碍物等问题,导致其在实际应用中难以达到预期效果。为解决这些问题,引入了建筑信息模型(building information modeling,BIM)技术,借助BIM的几何和语义信息支持,在复杂环境中辅助机器人定位导航,为机器人提供更精确的环境感知和最优路径规划,减少与环境构件的碰撞风险,并提升任务执行的精准度和效率。比较论述了BIM技术在机器人定位、建图、路径规划等方面的应用现状,分析了其在建筑环境中的应用优势和挑战,并展望了未来在智能建筑和机器人智能化领域的应用前景。