In this paper,a high-gain inductorless LNA(low-noise amplifier)compatible with multiple communication protocols from 0.1 to 5.1 GHz is proposed.A composite resistor-capacitor feedback structure is employed to achieve ...In this paper,a high-gain inductorless LNA(low-noise amplifier)compatible with multiple communication protocols from 0.1 to 5.1 GHz is proposed.A composite resistor-capacitor feedback structure is employed to achieve a wide bandwidth matching range and good gain flatness.A second stage with a Darlington pair is used to increase the overall gain of the amplifier,while the gain of the first stage is reduced to reduce the overall noise.The amplifier is based on a 0.25μm SiGe BiCMOS process,and thanks to the inductorless circuit structure,the core circuit area is only 0.03 mm^(2).Test results show that the lowest noise figure(NF)in the operating band is 1.99 dB,the power gain reaches 29.7 dB,the S_(11)and S_(22)are less than-10 dB,the S_(12)is less than-30 dB,the IIP3 is 0.81dBm,and the OP_(1dB)is 10.27 dBm.The operating current is 31.18 mA at 3.8 V supply.展开更多
基金funded by the Science,Technology and Innovation Commission of Shenzhen Municipality(JCYJ20220818101001003)。
文摘In this paper,a high-gain inductorless LNA(low-noise amplifier)compatible with multiple communication protocols from 0.1 to 5.1 GHz is proposed.A composite resistor-capacitor feedback structure is employed to achieve a wide bandwidth matching range and good gain flatness.A second stage with a Darlington pair is used to increase the overall gain of the amplifier,while the gain of the first stage is reduced to reduce the overall noise.The amplifier is based on a 0.25μm SiGe BiCMOS process,and thanks to the inductorless circuit structure,the core circuit area is only 0.03 mm^(2).Test results show that the lowest noise figure(NF)in the operating band is 1.99 dB,the power gain reaches 29.7 dB,the S_(11)and S_(22)are less than-10 dB,the S_(12)is less than-30 dB,the IIP3 is 0.81dBm,and the OP_(1dB)is 10.27 dBm.The operating current is 31.18 mA at 3.8 V supply.