A new route was developed for diastereoselective preparation of δ-(α-hydroxyalkyl)-αβ-unsaturated δ-lactones. A single diastereoisomer(14) of the lactone was obtained after oxidation and elimination of (12).
The self-condensation of n-butanal is an important reaction for carbon-chain extension in the commercial production of 2-ethylhexanol.Moreover,aldol condensation is one of the important reactions for the synthesis of ...The self-condensation of n-butanal is an important reaction for carbon-chain extension in the commercial production of 2-ethylhexanol.Moreover,aldol condensation is one of the important reactions for the synthesis of valuable organic chemicals or transportation fuels from biomass-derived platform compounds.So the investigation of the self-condensation of n-butanal is of significance in both academia and industry.This contribution reviewed the catalytic performance of heterogeneous catalysts in the self-condensation of n-butanal and the related reaction mechanism,network,and kinetics.The purpose of this review is to dedicate some help for further development of environmentally friendly catalysts and for a thorough comprehension of aldol condensation.展开更多
Continuous-flow upgrading of pentaerythritol synthesis technology via base-catalyzed aldol and Cannizzaro reactions of formaldehyde and acetaldehyde faces the challenge of effectively controlling the critical side rea...Continuous-flow upgrading of pentaerythritol synthesis technology via base-catalyzed aldol and Cannizzaro reactions of formaldehyde and acetaldehyde faces the challenge of effectively controlling the critical side reaction of hydroxymethyl acetaldehyde(HA)to the acrolein intermediate.Here,we first identified the forms of industrial formaldehyde as methane diol that easily converts to the alkaline formaldehyde under alkaline(NaOH)environment.The carbonyl group of alkaline formaldehyde induces deprotonation of acetaldehyde instead of the recognized base-hydroxyl group-induced deprotonation,and it needs to overcome only 18.31 kcal·mol^(-1)(1 kcal=4.186 kJ)energy barrier to form key intermediates of HA.The sodium solvation cage formed by NaOH hexa-coordinated formaldehyde effectively inhibits the alkalinity,thus contributing to a high energy barrier(46.21 kcal·mol^(-1))to unwanted acrolein formation.In addition,the solvation cage gradually opens to increase the alkalinity with the consumption of formaldehyde,thus facilitating the subsequent Cannizzaro reaction(to overcome 11.77 kcal·mol^(-1)).In comparison,strong alkalinity promotes the formation of acrolein(36.65 kcal·mol^(-1))to initiate the acetal side reaction,while weak alkalinity reduces the possibility of the Cannizzaro reaction(to overcome 20.44 kcal·mol^(-1)).This theoretically reveals the importance of the segmented feeding of weak and strong bases to successively control the aldol reaction and Cannizzaro reaction,and the combination of Na_(2)CO_(3) or HCOONa with NaOH improves the pentaerythritol yield by 7%to 13%compared to that of NaOH alone(70%yield)within 1 min at a throughput of 155.7 ml·min^(-1).展开更多
Ultra-long n-alkanes are highly valuable in both scientific research and as major constituents of specialty high-melting-point waxes.Unlike conventional methods(e.g.,Fischer–Tropsch(FT),ethylene oligomerization,and p...Ultra-long n-alkanes are highly valuable in both scientific research and as major constituents of specialty high-melting-point waxes.Unlike conventional methods(e.g.,Fischer–Tropsch(FT),ethylene oligomerization,and polyethylene cracking)typically resulting in wide n-alkane distributions,the elaborate design strategy presented herein allows the direct synthesis of pure,long n-alkanes using a modular splicing method with acetone,furfural,and fatty acid anhydrides or acyl chlorides as bio-blocks.The herein approach is based on a simple four-step catalytic reaction scheme involving C–C chain elongation and C–O bond activation.The synthesized pure n-alkanes had a carbon chain length as high as C_(49)(total yield of 49%).The synthesis approach also allows to selectively prepare n-alkanes with even and odd carbon numbers ranging from C15 to C_(49).This process represents a great breakthrough in the synthesis of long-chain pure n-alkanes,surpassing the carbon number limitations reported in previous methodologies.展开更多
文摘A new route was developed for diastereoselective preparation of δ-(α-hydroxyalkyl)-αβ-unsaturated δ-lactones. A single diastereoisomer(14) of the lactone was obtained after oxidation and elimination of (12).
基金supported by the National Natural Science Foundation of China(21476058,U21A20306,21506046 and 21978066)。
文摘The self-condensation of n-butanal is an important reaction for carbon-chain extension in the commercial production of 2-ethylhexanol.Moreover,aldol condensation is one of the important reactions for the synthesis of valuable organic chemicals or transportation fuels from biomass-derived platform compounds.So the investigation of the self-condensation of n-butanal is of significance in both academia and industry.This contribution reviewed the catalytic performance of heterogeneous catalysts in the self-condensation of n-butanal and the related reaction mechanism,network,and kinetics.The purpose of this review is to dedicate some help for further development of environmentally friendly catalysts and for a thorough comprehension of aldol condensation.
基金funded by the National Natural Science Foundation of China(22478632)Key Scientific and Technological Project of Henan Province(242102321032).
文摘Continuous-flow upgrading of pentaerythritol synthesis technology via base-catalyzed aldol and Cannizzaro reactions of formaldehyde and acetaldehyde faces the challenge of effectively controlling the critical side reaction of hydroxymethyl acetaldehyde(HA)to the acrolein intermediate.Here,we first identified the forms of industrial formaldehyde as methane diol that easily converts to the alkaline formaldehyde under alkaline(NaOH)environment.The carbonyl group of alkaline formaldehyde induces deprotonation of acetaldehyde instead of the recognized base-hydroxyl group-induced deprotonation,and it needs to overcome only 18.31 kcal·mol^(-1)(1 kcal=4.186 kJ)energy barrier to form key intermediates of HA.The sodium solvation cage formed by NaOH hexa-coordinated formaldehyde effectively inhibits the alkalinity,thus contributing to a high energy barrier(46.21 kcal·mol^(-1))to unwanted acrolein formation.In addition,the solvation cage gradually opens to increase the alkalinity with the consumption of formaldehyde,thus facilitating the subsequent Cannizzaro reaction(to overcome 11.77 kcal·mol^(-1)).In comparison,strong alkalinity promotes the formation of acrolein(36.65 kcal·mol^(-1))to initiate the acetal side reaction,while weak alkalinity reduces the possibility of the Cannizzaro reaction(to overcome 20.44 kcal·mol^(-1)).This theoretically reveals the importance of the segmented feeding of weak and strong bases to successively control the aldol reaction and Cannizzaro reaction,and the combination of Na_(2)CO_(3) or HCOONa with NaOH improves the pentaerythritol yield by 7%to 13%compared to that of NaOH alone(70%yield)within 1 min at a throughput of 155.7 ml·min^(-1).
基金supported by National Natural Science Foundation of China(General Program,No.22372060)Shanghai Municipal Science and Technology Commission Project(No.22dz1209300)National Natural Science Youth Fund(No.22205065)。
文摘Ultra-long n-alkanes are highly valuable in both scientific research and as major constituents of specialty high-melting-point waxes.Unlike conventional methods(e.g.,Fischer–Tropsch(FT),ethylene oligomerization,and polyethylene cracking)typically resulting in wide n-alkane distributions,the elaborate design strategy presented herein allows the direct synthesis of pure,long n-alkanes using a modular splicing method with acetone,furfural,and fatty acid anhydrides or acyl chlorides as bio-blocks.The herein approach is based on a simple four-step catalytic reaction scheme involving C–C chain elongation and C–O bond activation.The synthesized pure n-alkanes had a carbon chain length as high as C_(49)(total yield of 49%).The synthesis approach also allows to selectively prepare n-alkanes with even and odd carbon numbers ranging from C15 to C_(49).This process represents a great breakthrough in the synthesis of long-chain pure n-alkanes,surpassing the carbon number limitations reported in previous methodologies.