The common marmoset (Callithrix jacchus) has attracted extensive attention for use as a non-human primate model in biomedical research, especially in the study of neuropsychiatric disorders. However, behavioral test...The common marmoset (Callithrix jacchus) has attracted extensive attention for use as a non-human primate model in biomedical research, especially in the study of neuropsychiatric disorders. However, behavioral test methods are still limited in the field of marmoset research. The light-dark box is widely used for the evaluation of anxiety in rodents, but little is known about light-dark preference in marmosets. Here, we modified the light-dark test to study this behavior. The modified apparatus consisted of three compartments: one transparent open area and two closed opaque compartments. The closed compartments could be dark or light. We found that both adult and young marmosets liked to explore the open area, but the young animals showed more interest than adults. Furthermore, when one of the closed compartments was light and the other dark, the adult marmosets showed a preference for the dark compartment, but the young animals had no preference. These results suggest that the exploratory behavior and the light-dark preference in marmosets are age-dependent. Our study provides a new method to study exploration, anxiety, and fear in marmosets.展开更多
Twin-core optical fibers are applied in such fields as the optical sensing and optical communication,and propagation of the pulses,Gauss beams and laser beams in the non-Kerr media is reported.Studied in this paper ar...Twin-core optical fibers are applied in such fields as the optical sensing and optical communication,and propagation of the pulses,Gauss beams and laser beams in the non-Kerr media is reported.Studied in this paper are the coupled cubic-quintic nonlinear Schrodinger equations with variable coefficients,which describe the effects of quintic nonlinearity for the ultrashort optical pulse propagation in a twin-core optical fiber or non-Kerr medium.Based on the integrable conditions,bilinear forms are derived,and dark-dark soliton solutions can be constructed in terms of the Gramian via the Kadomtsev-Petviashvili hierarchy reduction.Propagation and interaction of the dark-dark solitons are presented and discussed through the graphic analysis.With different values of the delayed nonlinear response effect b(z),where z represents direction of the propagation,the linear-and parabolic-shaped one dark-dark soltions can be derived.Interactions between the parabolic-and periodic-shaped two dark-dark solitons are presented with b(z)as the linear and periodic functions,respectively.Directions of velocities of the two dark-dark solitons vary with z and the amplitudes of the solitons remain unchanged can be observed.Interactions between the two dark-dark solitons of different types are displayed,and we observe that the velocity of one soliton is zero and direction of the velocity of the other soliton vary with z.We find that those interactions are elastic.展开更多
In the proposed light-dark dual universe, the light universe is the observable universe with light and kinetic energy that fueled the Big Bang, and the dark universe without light and kinetic energy has been observed ...In the proposed light-dark dual universe, the light universe is the observable universe with light and kinetic energy that fueled the Big Bang, and the dark universe without light and kinetic energy has been observed as dark energy since about 9 billion years after the Big Bang. The light-dark dual universe started from the zero-energy universe through the four-stage cyclic transformation. Emerging from the zero-energy universe, the four-stage transformation consists of the 11D (dimensional) positive-negative energy dual membrane universe, the 10D positive-negative energy dual string universe, the 10D positive-negative energy dual particle universe, and the 4D (light)-variable D (dark) positive-negative energy dual particle asymmetrical universe. The transformation can then be reversed back to the zero-energy universe through the reverse four-stage transformation. The light universe is an observable four-dimensional universe started with the inflation and the Big Bang, and the dark universe is a variable dimensional universe from 10D to 4D. The dark universe could be observed as dark energy only when the dark universe turned into a four-dimensional universe. The four-stage transformation explains the four force fields in our universe. The theoretical calculated percentages of dark energy, dark matter, and baryonic matter are 72.8. 22.7, and 4.53, respectively, in nearly complete agreement with observed 72.8, 22.7, and 4.56, respectively. According to the calculation, dark energy started in 4.47 billion years ago in agreement with the observed 4.71 ± 0.98 billion years ago. The zero-energy cyclic universe is based on the space-object structures.展开更多
Based on Witten’s T-duality and mirror symmetry we show, following earlier work, the fundamental complimentarity of the Casimir energy and dark energy. Such a conclusion opens new vistas in cold fusion technology in ...Based on Witten’s T-duality and mirror symmetry we show, following earlier work, the fundamental complimentarity of the Casimir energy and dark energy. Such a conclusion opens new vistas in cold fusion technology in the wider sense of the word which we tackle via fractal nano technologies leading to some design proposals for a nano Casimir-dark energy reactor.展开更多
A basically topological interpretation of the Casimir effect is given as a natural intrinsic property of the geometrical topological structure of the quantum-Cantorian micro spacetime. This new interpretation complime...A basically topological interpretation of the Casimir effect is given as a natural intrinsic property of the geometrical topological structure of the quantum-Cantorian micro spacetime. This new interpretation compliments the earlier conventional interpretation as vacuum fluctuation or as a Schwinger source and links the Casimir energy to the so called missing dark energy density of the cosmos. We start with a general outline of the theoretical principle and basic design concepts of a proposed Casimir dark energy nano reactor. In a nutshell the theory and consequently the actual design depends crucially upon the equivalence between the dark energy density of the cosmos and the faint local Casimir effect produced by two sides boundary condition quantum waves. This Casimir effect is then colossally amplified as a one sided quantum wave pushing from the inside on the one sided M?bius-like boundary with nothing balancing it from the non-existent outside. In view of the present theory, this one sided M?bius-like boundary of the holographic boundary of the universe is essentially what leads to the observed accelerated expansion of the cosmos. Thus in principle we will restructure the local topology of space using material nanoscience technology to create an artificial local high dimensionality with a Dvoretzky theorem like volume measure concentration. Needless to say the entire design is based completely on the theory of quantum wave dark energy proposed by the present author. The quintessence of the present theory is easily explained as the intrinsic Casimir topological energy where produced from the zero set of the quantum particle when we extract the empty set quantum wave from it and find by restructuring space via plates similar to that of the classical Casimir experiments but with some modification.展开更多
A phase one design of a new free energy nano reactor is presented. The design is based on a basically topological interpretation of the Casimir effect as a natural intrinsic property of the geometrical topological str...A phase one design of a new free energy nano reactor is presented. The design is based on a basically topological interpretation of the Casimir effect as a natural intrinsic property of the geometrical topological structure of the quantum-Cantorian micro spacetime. In particular we view dark energy, Hawking negative energy, Unruh temperature and zero point vacuum energy as being different sides of the same multi-dimensional coin. This new interpretation compliments the earlier conventional interpretation as vacuum fluctuation or as a Schwinger source and links the Casimir energy to the so-called missing dark energy density of the cosmos. We start with a general outline of the theoretical principle and basic design concepts of a proposed Casimir dark energy nano reactor. In a nutshell the theory and consequently the actual design depend crucially upon the equivalence between the dark energy density of the cosmos and the faint local Casimir effect produced by two sides boundary condition quantum waves. This Casimir effect is then colossally amplified as a one internal quantum wave representing a Hartle-Hawking state vector of the universe pushing from the inside against the boundary of the universe with nothing balancing it from the non-existent outside. This strange situation becomes completely natural and logical when we remember that the boundary of the universe is a one sided Möbius like manifold. In view of the present theory, this is essentially what leads to the observed accelerated expansion of the cosmos. As in any reactor, the basic principle in the present design is to produce a gradient so that the excess energy on one side flows to the other side. Thus in principle we will restructure the local topology of space using material nanoscience technology to create an artificial local high dimensionality with a Dvoretzky theorem like 96 percent volume measure concentration. Without going into the intricate nonlinear dynamics and technological detail, it is fair to say that this would lead us to pure, clean, free energy obtained directly from the topology of spacetime via an artificial singularity. Needless to say, the entire design is based completely on the theory of quantum wave dark energy proposed by the present author for the first time in 2011 in a conference held in the Bibliotheca Alexandrina, Egypt and a little later in Shanghai, Republic of China. The quintessence of the present theory is easily explained as the Φ3 intrinsic Casimir topological energy where Φ=?(√5-1)/2 is produced from the zero set Φ of the quantum particle when we extract the empty set quantum wave Φ2 from it and find Φ-Φ2=Φ3 by restructuring space via conducting but uncharged plates similar to that of the classical Casimir experiments. Our proposed preliminary design of this Casimir-spacetime artificial singularity reactor follows in a natural way from the above.展开更多
In this paper we outline a non-perturbative quantum relativity theory. Subsequently an actual design of a nanotech energy reactor is based on spacetime vacuum fluctuation of the said quantum relativity theory. Using a...In this paper we outline a non-perturbative quantum relativity theory. Subsequently an actual design of a nanotech energy reactor is based on spacetime vacuum fluctuation of the said quantum relativity theory. Using a compact heap of Fullerene nano particle moduli of a nano matrix device we propose that by maximizing the Casimir forces between these particles as a desirable effect, we can achieve a gradual rather than a sudden implosion pressure. We expect that this will result in a mini holographic universe from which energy can be extracted in a way to constitute a nano energy reactor and function effectively on a hybrid principle somewhere between a Casimir effect and a cold fusion process based on the fusion algebra of a highly structured golden ring quantum field theory. The present theory depends upon many concepts and results, in particular J. Schwinger’s source theory as well as the modern theory of quantum sets, nonlinear dynamics, chaos and chaotic fractals.展开更多
以分别来自巴布亚·新几内亚(Papua New Guinea)、厄瓜多尔(Ecuador)和加纳(Ghana)产地的3种可可豆和3种可可液块制成的6组100%黑巧克力作为研究对象。将超气相电子鼻与感官评价相结合,采用主成分分析和正交偏最小二乘判别分析对其...以分别来自巴布亚·新几内亚(Papua New Guinea)、厄瓜多尔(Ecuador)和加纳(Ghana)产地的3种可可豆和3种可可液块制成的6组100%黑巧克力作为研究对象。将超气相电子鼻与感官评价相结合,采用主成分分析和正交偏最小二乘判别分析对其风味进行解析,探索不同产地可可豆和可可液块制成的100%黑巧克力的风味差异。6款样品中共检测出30种挥发性风味化合物,基于预测变量重要性投影(variable importance in projection,VIP)值进一步筛选出醛类、酮类、吡嗪类等22种主要差异挥发性风味化合物。主成分分析与正交偏最小二乘判别分析结果相一致,3种可可豆制备的100%豆到块(bean to bar,BTB)黑巧克力与3款可可液块制备的100%黑巧克力风味得到明显区分,模型拟合效果好,验证有效,分析结果可靠。可可豆制备的100%BTB黑巧克力样品果香、烘烤香、可可香、坚果香会更浓郁,果味、酸味、巧克力味会更突显。综上,超快速气相电子鼻结合多元统计,可对不同产地可可豆和可可液块制备的100%黑巧克力风味进行有效快速区分,可可豆制备的100%BTB黑巧克力的挥发性风味化合物总含量和风味强度相比同产地的可可液块制备的100%黑巧克力表现更高,感官评价更突出,风味更愉悦。展开更多
基金supported by the Youth Innovation Promotion Association of the Chinese Academy of Sciences and an SA-SIBS scholarshipthe National Basic Research Development Program (973 Program) of China (2011CBA00400)the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB02020100)
文摘The common marmoset (Callithrix jacchus) has attracted extensive attention for use as a non-human primate model in biomedical research, especially in the study of neuropsychiatric disorders. However, behavioral test methods are still limited in the field of marmoset research. The light-dark box is widely used for the evaluation of anxiety in rodents, but little is known about light-dark preference in marmosets. Here, we modified the light-dark test to study this behavior. The modified apparatus consisted of three compartments: one transparent open area and two closed opaque compartments. The closed compartments could be dark or light. We found that both adult and young marmosets liked to explore the open area, but the young animals showed more interest than adults. Furthermore, when one of the closed compartments was light and the other dark, the adult marmosets showed a preference for the dark compartment, but the young animals had no preference. These results suggest that the exploratory behavior and the light-dark preference in marmosets are age-dependent. Our study provides a new method to study exploration, anxiety, and fear in marmosets.
基金the National Natural Science Foundation of China under Grant Nos.11772017,11805020,11272023 and 11471050the Fund of State Key Laboratory of Information Photonics and Optical Communications(Beijing University of Posts and Telecommunications),China(IPOC:2017ZZ05)the Fundamental Research Funds for the Central Universities of China under Grant No.2011BUPTYB02
文摘Twin-core optical fibers are applied in such fields as the optical sensing and optical communication,and propagation of the pulses,Gauss beams and laser beams in the non-Kerr media is reported.Studied in this paper are the coupled cubic-quintic nonlinear Schrodinger equations with variable coefficients,which describe the effects of quintic nonlinearity for the ultrashort optical pulse propagation in a twin-core optical fiber or non-Kerr medium.Based on the integrable conditions,bilinear forms are derived,and dark-dark soliton solutions can be constructed in terms of the Gramian via the Kadomtsev-Petviashvili hierarchy reduction.Propagation and interaction of the dark-dark solitons are presented and discussed through the graphic analysis.With different values of the delayed nonlinear response effect b(z),where z represents direction of the propagation,the linear-and parabolic-shaped one dark-dark soltions can be derived.Interactions between the parabolic-and periodic-shaped two dark-dark solitons are presented with b(z)as the linear and periodic functions,respectively.Directions of velocities of the two dark-dark solitons vary with z and the amplitudes of the solitons remain unchanged can be observed.Interactions between the two dark-dark solitons of different types are displayed,and we observe that the velocity of one soliton is zero and direction of the velocity of the other soliton vary with z.We find that those interactions are elastic.
文摘In the proposed light-dark dual universe, the light universe is the observable universe with light and kinetic energy that fueled the Big Bang, and the dark universe without light and kinetic energy has been observed as dark energy since about 9 billion years after the Big Bang. The light-dark dual universe started from the zero-energy universe through the four-stage cyclic transformation. Emerging from the zero-energy universe, the four-stage transformation consists of the 11D (dimensional) positive-negative energy dual membrane universe, the 10D positive-negative energy dual string universe, the 10D positive-negative energy dual particle universe, and the 4D (light)-variable D (dark) positive-negative energy dual particle asymmetrical universe. The transformation can then be reversed back to the zero-energy universe through the reverse four-stage transformation. The light universe is an observable four-dimensional universe started with the inflation and the Big Bang, and the dark universe is a variable dimensional universe from 10D to 4D. The dark universe could be observed as dark energy only when the dark universe turned into a four-dimensional universe. The four-stage transformation explains the four force fields in our universe. The theoretical calculated percentages of dark energy, dark matter, and baryonic matter are 72.8. 22.7, and 4.53, respectively, in nearly complete agreement with observed 72.8, 22.7, and 4.56, respectively. According to the calculation, dark energy started in 4.47 billion years ago in agreement with the observed 4.71 ± 0.98 billion years ago. The zero-energy cyclic universe is based on the space-object structures.
文摘Based on Witten’s T-duality and mirror symmetry we show, following earlier work, the fundamental complimentarity of the Casimir energy and dark energy. Such a conclusion opens new vistas in cold fusion technology in the wider sense of the word which we tackle via fractal nano technologies leading to some design proposals for a nano Casimir-dark energy reactor.
文摘A basically topological interpretation of the Casimir effect is given as a natural intrinsic property of the geometrical topological structure of the quantum-Cantorian micro spacetime. This new interpretation compliments the earlier conventional interpretation as vacuum fluctuation or as a Schwinger source and links the Casimir energy to the so called missing dark energy density of the cosmos. We start with a general outline of the theoretical principle and basic design concepts of a proposed Casimir dark energy nano reactor. In a nutshell the theory and consequently the actual design depends crucially upon the equivalence between the dark energy density of the cosmos and the faint local Casimir effect produced by two sides boundary condition quantum waves. This Casimir effect is then colossally amplified as a one sided quantum wave pushing from the inside on the one sided M?bius-like boundary with nothing balancing it from the non-existent outside. In view of the present theory, this one sided M?bius-like boundary of the holographic boundary of the universe is essentially what leads to the observed accelerated expansion of the cosmos. Thus in principle we will restructure the local topology of space using material nanoscience technology to create an artificial local high dimensionality with a Dvoretzky theorem like volume measure concentration. Needless to say the entire design is based completely on the theory of quantum wave dark energy proposed by the present author. The quintessence of the present theory is easily explained as the intrinsic Casimir topological energy where produced from the zero set of the quantum particle when we extract the empty set quantum wave from it and find by restructuring space via plates similar to that of the classical Casimir experiments but with some modification.
文摘A phase one design of a new free energy nano reactor is presented. The design is based on a basically topological interpretation of the Casimir effect as a natural intrinsic property of the geometrical topological structure of the quantum-Cantorian micro spacetime. In particular we view dark energy, Hawking negative energy, Unruh temperature and zero point vacuum energy as being different sides of the same multi-dimensional coin. This new interpretation compliments the earlier conventional interpretation as vacuum fluctuation or as a Schwinger source and links the Casimir energy to the so-called missing dark energy density of the cosmos. We start with a general outline of the theoretical principle and basic design concepts of a proposed Casimir dark energy nano reactor. In a nutshell the theory and consequently the actual design depend crucially upon the equivalence between the dark energy density of the cosmos and the faint local Casimir effect produced by two sides boundary condition quantum waves. This Casimir effect is then colossally amplified as a one internal quantum wave representing a Hartle-Hawking state vector of the universe pushing from the inside against the boundary of the universe with nothing balancing it from the non-existent outside. This strange situation becomes completely natural and logical when we remember that the boundary of the universe is a one sided Möbius like manifold. In view of the present theory, this is essentially what leads to the observed accelerated expansion of the cosmos. As in any reactor, the basic principle in the present design is to produce a gradient so that the excess energy on one side flows to the other side. Thus in principle we will restructure the local topology of space using material nanoscience technology to create an artificial local high dimensionality with a Dvoretzky theorem like 96 percent volume measure concentration. Without going into the intricate nonlinear dynamics and technological detail, it is fair to say that this would lead us to pure, clean, free energy obtained directly from the topology of spacetime via an artificial singularity. Needless to say, the entire design is based completely on the theory of quantum wave dark energy proposed by the present author for the first time in 2011 in a conference held in the Bibliotheca Alexandrina, Egypt and a little later in Shanghai, Republic of China. The quintessence of the present theory is easily explained as the Φ3 intrinsic Casimir topological energy where Φ=?(√5-1)/2 is produced from the zero set Φ of the quantum particle when we extract the empty set quantum wave Φ2 from it and find Φ-Φ2=Φ3 by restructuring space via conducting but uncharged plates similar to that of the classical Casimir experiments. Our proposed preliminary design of this Casimir-spacetime artificial singularity reactor follows in a natural way from the above.
文摘In this paper we outline a non-perturbative quantum relativity theory. Subsequently an actual design of a nanotech energy reactor is based on spacetime vacuum fluctuation of the said quantum relativity theory. Using a compact heap of Fullerene nano particle moduli of a nano matrix device we propose that by maximizing the Casimir forces between these particles as a desirable effect, we can achieve a gradual rather than a sudden implosion pressure. We expect that this will result in a mini holographic universe from which energy can be extracted in a way to constitute a nano energy reactor and function effectively on a hybrid principle somewhere between a Casimir effect and a cold fusion process based on the fusion algebra of a highly structured golden ring quantum field theory. The present theory depends upon many concepts and results, in particular J. Schwinger’s source theory as well as the modern theory of quantum sets, nonlinear dynamics, chaos and chaotic fractals.
文摘以分别来自巴布亚·新几内亚(Papua New Guinea)、厄瓜多尔(Ecuador)和加纳(Ghana)产地的3种可可豆和3种可可液块制成的6组100%黑巧克力作为研究对象。将超气相电子鼻与感官评价相结合,采用主成分分析和正交偏最小二乘判别分析对其风味进行解析,探索不同产地可可豆和可可液块制成的100%黑巧克力的风味差异。6款样品中共检测出30种挥发性风味化合物,基于预测变量重要性投影(variable importance in projection,VIP)值进一步筛选出醛类、酮类、吡嗪类等22种主要差异挥发性风味化合物。主成分分析与正交偏最小二乘判别分析结果相一致,3种可可豆制备的100%豆到块(bean to bar,BTB)黑巧克力与3款可可液块制备的100%黑巧克力风味得到明显区分,模型拟合效果好,验证有效,分析结果可靠。可可豆制备的100%BTB黑巧克力样品果香、烘烤香、可可香、坚果香会更浓郁,果味、酸味、巧克力味会更突显。综上,超快速气相电子鼻结合多元统计,可对不同产地可可豆和可可液块制备的100%黑巧克力风味进行有效快速区分,可可豆制备的100%BTB黑巧克力的挥发性风味化合物总含量和风味强度相比同产地的可可液块制备的100%黑巧克力表现更高,感官评价更突出,风味更愉悦。