期刊文献+
共找到193篇文章
< 1 2 10 >
每页显示 20 50 100
ADAPTIVE PREDICTIVE CONTROL OF NEAR-SPACE VEHICLE USING FUNCTIONAL LINK NETWORK 被引量:3
1
作者 都延丽 吴庆宪 姜长生 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2010年第2期148-154,共7页
A novel nonlinear adaptive control method is presented for a near-space hypersonic vehicle (NHV) in the presence of strong uncertainties and disturbances. The control law consists of the optimal generalized predicti... A novel nonlinear adaptive control method is presented for a near-space hypersonic vehicle (NHV) in the presence of strong uncertainties and disturbances. The control law consists of the optimal generalized predictive controller (OGPC) and the functional link network (FLN) direct adaptive law. OGPC is a continuous-time nonlinear predictive control law. The FLN adaptive law is used to offset the unknown uncertainties and disturbances in a flight through the online learning. The learning process does not need any offline training phase. The stability analyses of the NHV close-loop system are provided and it is proved that the system error and the weight learning error are uniformly ultimately hounded. Simulation results show the satisfactory performance of the con- troller for the attitude tracking. 展开更多
关键词 predictive control systems adaptive control systems UNCERTAINTY functional link network near-space vehicle
在线阅读 下载PDF
Adaptive functional link network control of near-space vehicles with dynamical uncertainties 被引量:5
2
作者 Yanli Du Qingxian Wu Changsheng Jiang Jie Wen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第5期868-876,共9页
The control law design for a near-space hypersonic vehicle(NHV) is highly challenging due to its inherent nonlinearity,plant uncertainties and sensitivity to disturbances.This paper presents a novel functional link ... The control law design for a near-space hypersonic vehicle(NHV) is highly challenging due to its inherent nonlinearity,plant uncertainties and sensitivity to disturbances.This paper presents a novel functional link network(FLN) control method for an NHV with dynamical thrust and parameter uncertainties.The approach devises a new partially-feedback-functional-link-network(PFFLN) adaptive law and combines it with the nonlinear generalized predictive control(NGPC) algorithm.The PFFLN is employed for approximating uncertainties in flight.Its weights are online tuned based on Lyapunov stability theorem for the first time.The learning process does not need any offline training phase.Additionally,a robust controller with an adaptive gain is designed to offset the approximation error.Finally,simulation results show a satisfactory performance for the NHV attitude tracking,and also illustrate the controller's robustness. 展开更多
关键词 adaptive control system dynamical uncertainties partially feedback functional link network near-space vehicle.
在线阅读 下载PDF
Optimized functional linked neural network for predicting diaphragm wall deflection induced by braced excavations in clays 被引量:4
3
作者 Chengyu Xie Hoang Nguyen +1 位作者 Yosoon Choi Danial Jahed Armaghani 《Geoscience Frontiers》 SCIE CAS CSCD 2022年第2期34-51,共18页
Deep excavation during the construction of underground systems can cause movement on the ground,especially in soft clay layers.At high levels,excessive ground movements can lead to severe damage to adjacent structures... Deep excavation during the construction of underground systems can cause movement on the ground,especially in soft clay layers.At high levels,excessive ground movements can lead to severe damage to adjacent structures.In this study,finite element analyses(FEM)and the hardening small strain(HSS)model were performed to investigate the deflection of the diaphragm wall in the soft clay layer induced by braced excavations.Different geometric and mechanical properties of the wall were investigated to study the deflection behavior of the wall in soft clays.Accordingly,1090 hypothetical cases were surveyed and simulated based on the HSS model and FEM to evaluate the wall deflection behavior.The results were then used to develop an intelligent model for predicting wall deflection using the functional linked neural network(FLNN)with different functional expansions and activation functions.Although the FLNN is a novel approach to predict wall deflection;however,in order to improve the accuracy of the FLNN model in predicting wall deflection,three swarm-based optimization algorithms,such as artificial bee colony(ABC),Harris’s hawk’s optimization(HHO),and hunger games search(HGS),were hybridized to the FLNN model to generate three novel intelligent models,namely ABC-FLNN,HHO-FLNN,HGS-FLNN.The results of the hybrid models were then compared with the basic FLNN and MLP models.They revealed that FLNN is a good solution for predicting wall deflection,and the application of different functional expansions and activation functions has a significant effect on the outcome predictions of the wall deflection.It is remarkably interesting that the performance of the FLNN model was better than the MLP model with a mean absolute error(MAE)of 19.971,root-mean-squared error(RMSE)of 24.574,and determination coefficient(R^(2))of 0.878.Meanwhile,the performance of the MLP model only obtained an MAE of 20.321,RMSE of 27.091,and R^(2)of 0.851.Furthermore,the results also indicated that the proposed hybrid models,i.e.,ABC-FLNN,HHO-FLNN,HGS-FLNN,yielded more superior performances than those of the FLNN and MLP models in terms of the prediction of deflection behavior of diaphragm walls with an MAE in the range of 11.877 to 12.239,RMSE in the range of 15.821 to 16.045,and R^(2)in the range of 0.949 to 0.951.They can be used as an alternative tool to simulate diaphragm wall deflections under different conditions with a high degree of accuracy. 展开更多
关键词 Diaphragm wall deflection Braced excavation Finite element analysis Clays Meta-heuristic algorithms functional linked neural network
在线阅读 下载PDF
Functional Link Neural Network for Predicting Crystallization Temperature of Ammonium Chloride in Air Cooler System 被引量:3
4
作者 Jin Haozhe Gu Yong +3 位作者 Ren Jia Wu Xiangyao Quan Jianxun Xu Linfengyi 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2020年第2期86-92,共7页
The air cooler is an important equipment in the petroleum refining industry.Ammonium chloride(NH4 Cl)deposition-induced corrosion is one of its main failure forms.In this study,the ammonium salt crystallization temper... The air cooler is an important equipment in the petroleum refining industry.Ammonium chloride(NH4 Cl)deposition-induced corrosion is one of its main failure forms.In this study,the ammonium salt crystallization temperature is chosen as the key decision variable of NH4 Cl deposition-induced corrosion through in-depth mechanism research and experimental analysis.The functional link neural network(FLNN)is adopted as the basic algorithm for modeling because of its advantages in dealing with non-linear problems and its fast-computational ability.A hybrid FLNN attached to a small norm is built to improve the generalization performance of the model.Then,the trained model is used to predict the NH4 Cl salt crystallization temperature in the air cooler of a sour water stripper plant.Experimental results show the proposed improved FLNN algorithm can achieve better generalization performance than the PLS,the back propagation neural network,and the conventional FLNN models. 展开更多
关键词 air cooler NH4Cl salt crystallization temperature DATA-DRIVEN functional link neural network particle swarm optimization
在线阅读 下载PDF
Multivariable Dynamic Modeling for Molten Iron Quality Using Incremental Random Vector Functional-link Networks 被引量:4
5
作者 Li ZHANG Ping ZHOU +2 位作者 He-da SONG Meng YUAN Tian-you CHAI 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2016年第11期1151-1159,共9页
Molten iron temperature as well as Si, P, and S contents is the most essential molten iron quality (MIQ) indices in the blast furnace (BF) ironmaking, which requires strict monitoring during the whole ironmaking p... Molten iron temperature as well as Si, P, and S contents is the most essential molten iron quality (MIQ) indices in the blast furnace (BF) ironmaking, which requires strict monitoring during the whole ironmaking production. However, these MIQ parameters are difficult to be directly measured online, and large-time delay exists in off-line analysis through laboratory sampling. Focusing on the practical challenge, a data-driven modeling method was presented for the prediction of MIQ using the improved muhivariable incremental random vector functional-link net- works (M-I-RVFLNs). Compared with the conventional random vector functional-link networks (RVFLNs) and the online sequential RVFLNs, the M-I-RVFLNs have solved the problem of deciding the optimal number of hidden nodes and overcome the overfitting problems. Moreover, the proposed M I RVFLNs model has exhibited the potential for multivariable prediction of the MIQ and improved the terminal condition for the multiple-input multiple-out- put (MIMO) dynamic system, which is suitable for the BF ironmaking process in practice. Ultimately, industrial experiments and contrastive researches have been conducted on the BF No. 2 in Liuzhou Iron and Steel Group Co. Ltd. of China using the proposed method, and the results demonstrate that the established model produces better estima ting accuracy than other MIQ modeling methods. 展开更多
关键词 molten iron quality multivariable incremental random vector functional-link network blast furnace iron-making data-driven modeling principal component analysis
原文传递
Fully Distributed Learning for Deep Random Vector Functional-Link Networks
6
作者 Huada Zhu Wu Ai 《Journal of Applied Mathematics and Physics》 2024年第4期1247-1262,共16页
In the contemporary era, the proliferation of information technology has led to an unprecedented surge in data generation, with this data being dispersed across a multitude of mobile devices. Facing these situations a... In the contemporary era, the proliferation of information technology has led to an unprecedented surge in data generation, with this data being dispersed across a multitude of mobile devices. Facing these situations and the training of deep learning model that needs great computing power support, the distributed algorithm that can carry out multi-party joint modeling has attracted everyone’s attention. The distributed training mode relieves the huge pressure of centralized model on computer computing power and communication. However, most distributed algorithms currently work in a master-slave mode, often including a central server for coordination, which to some extent will cause communication pressure, data leakage, privacy violations and other issues. To solve these problems, a decentralized fully distributed algorithm based on deep random weight neural network is proposed. The algorithm decomposes the original objective function into several sub-problems under consistency constraints, combines the decentralized average consensus (DAC) and alternating direction method of multipliers (ADMM), and achieves the goal of joint modeling and training through local calculation and communication of each node. Finally, we compare the proposed decentralized algorithm with several centralized deep neural networks with random weights, and experimental results demonstrate the effectiveness of the proposed algorithm. 展开更多
关键词 Distributed Optimization Deep Neural network Random Vector functional-link (RVFL) network Alternating Direction Method of Multipliers (ADMM)
在线阅读 下载PDF
Mathematical Model and Algorithm for Link Community Detection in Bipartite Networks 被引量:1
7
作者 Zhenping Li Shihua Zhang Xiangsun Zhang 《American Journal of Operations Research》 2015年第5期421-434,共14页
In the past ten years, community detection in complex networks has attracted more and more attention of researchers. Communities often correspond to functional subunits in the complex systems. In complex network, a no... In the past ten years, community detection in complex networks has attracted more and more attention of researchers. Communities often correspond to functional subunits in the complex systems. In complex network, a node community can be defined as a subgraph induced by a set of nodes, while a link community is a subgraph induced by a set of links. Although most researches pay more attention to identifying node communities in both unipartite and bipartite networks, some researchers have investigated the link community detection problem in unipartite networks. But current research pays little attention to the link community detection problem in bipartite networks. In this paper, we investigate the link community detection problem in bipartite networks, and formulate it into an integer programming model. We proposed a genetic algorithm for partition the bipartite network into overlapping link communities. Simulations are done on both artificial networks and real-world networks. The results show that the bipartite network can be efficiently partitioned into overlapping link communities by the genetic algorithm. 展开更多
关键词 BIPARTITE network link Community Quantity function INTEGER PROGRAMMING GENETIC Algorithm
在线阅读 下载PDF
Numeral eddy current sensor modelling based on genetic neural network 被引量:1
8
作者 俞阿龙 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第3期878-882,共5页
This paper presents a method used to the numeral eddy current sensor modelling based on the genetic neural network to settle its nonlinear problem. The principle and algorithms of genetic neural network are introduced... This paper presents a method used to the numeral eddy current sensor modelling based on the genetic neural network to settle its nonlinear problem. The principle and algorithms of genetic neural network are introduced. In this method, the nonlinear model parameters of the numeral eddy current sensor are optimized by genetic neural network (GNN) according to measurement data. So the method remains both the global searching ability of genetic algorithm and the good local searching ability of neural network. The nonlinear model has the advantages of strong robustness, on-line modelling and high precision. The maximum nonlinearity error can be reduced to 0.037% by using GNN. However, the maximum nonlinearity error is 0.075% using the least square method. 展开更多
关键词 MODELLING numeral eddy current sensor functional link neural network genetic neural network
原文传递
A New Modeling Method Based on Genetic Neural Network for Numeral Eddy Current Sensor
9
作者 Along Yu Zheng Li 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2006年第A03期611-613,共3页
In this paper,we present a method used to the numeral eddy current sensor modeling based on genetic neural network to settle its nonlinear problem.The principle and algorithms of genetic neural network are introduced.... In this paper,we present a method used to the numeral eddy current sensor modeling based on genetic neural network to settle its nonlinear problem.The principle and algorithms of genetic neural network are introduced.In this method, the nonlinear model parameters of the numeral eddy current sensor are optimized by genetic neural network (GNN) according to measurement data.So the method remains both the global searching ability of genetic algorithm and the good local searching ability of neural network.The nonlinear model has the advantages of strong robustness,on-line scaling and high precision.The maximum nonlinearity error can be reduced to 0.037% using GNN.However,the maximum nonlinearity error is 0.075% using least square method (LMS). 展开更多
关键词 MODELING eddy current sensor functional link neural network genetic algorithm genetic neural network
在线阅读 下载PDF
安全网络CC-Link Safety浅谈
10
作者 吴勤 覃强 《仪器仪表标准化与计量》 2007年第1期13-14,共2页
介绍CC-Link Safety的技术背景和技术特点,该技术是安全网络的代表之一,其设计的基础是开放式现场总线CC-Link,兼顾了网络安全性和系统构造的经济性,对我国的安全性系统构造有着重要的借鉴意义。
关键词 CC—link Salety 安全网络 RAS功能
在线阅读 下载PDF
基于混合集成学习的电网安全评估模型研究 被引量:2
11
作者 常英贤 郭阳 +1 位作者 王越越 邵志敏 《自动化仪表》 2025年第3期43-48,共6页
针对电力系统安全评估时存在原始相量测量装置(PMU)数据缺失导致评估效果差的问题,提出了一种基于混合集成学习的电网安全评估模型。设计了基于生成对抗网络(GAN)的电力数据增强模型,从而实现在不依赖PMU可观测性和网络拓扑的情况下,直... 针对电力系统安全评估时存在原始相量测量装置(PMU)数据缺失导致评估效果差的问题,提出了一种基于混合集成学习的电网安全评估模型。设计了基于生成对抗网络(GAN)的电力数据增强模型,从而实现在不依赖PMU可观测性和网络拓扑的情况下,直接准确填充缺失数据。建立了结合极限学习机(ELM)和随机向量函数链接(RVFL)的混合电力特征集成学习网络,以实现更优的学习性能,从而提高评估精度。在试验阶段,应用GAN数据增强后,与ELM、RVFL、支持向量机(SVM)、递归神经网络(RNN)、长短时记忆(LSTM)等模型相比,所提模型性能最优。所提模型的训练集平均绝对百分比误差(MAPE)约为0.0285,测试集MAPE约为0.0389。所提模型为电力系统安全评估、管理及稳定运行提供了借鉴。 展开更多
关键词 电力系统 安全评估 深度学习 数据增强 极限学习机 随机向量函数链接网络
在线阅读 下载PDF
Multilayer perceptron and Chebyshev polynomials-based functional link artificial neural network for solving differential equations
12
作者 Shagun Panghal Manoj Kumar 《International Journal of Modeling, Simulation, and Scientific Computing》 EI 2021年第2期104-119,共16页
This paper discusses the issues of computational efforts and the accuracy of solutions of differential equations using multilayer perceptron and Chebyshev polynomials-based functional link artificial neural networks.S... This paper discusses the issues of computational efforts and the accuracy of solutions of differential equations using multilayer perceptron and Chebyshev polynomials-based functional link artificial neural networks.Some ordinary and partial differential equations have been solved by both these techniques and pros and cons of both these type of feedforward networks have been discussed in detail.Apart from that,various factors that affect the accuracy of the solution have also been analyzed. 展开更多
关键词 Multilayer perceptron optimization functional link neural network trial solution Chebyshev polynomials
原文传递
一种水下目标运动要素解算实时精度预估方法
13
作者 梅鹏 《舰船电子对抗》 2025年第4期85-90,共6页
针对当前水下目标运动要素解算实时精度获取难度大的问题,从目标运动要素解算理论精度求解入手,利用随机向量函数连接神经网络(RVFLNN)建立了目标运动要素解算实时精度的预估计算方法,并结合特定数据集的仿真实验验证了方法的正确性。... 针对当前水下目标运动要素解算实时精度获取难度大的问题,从目标运动要素解算理论精度求解入手,利用随机向量函数连接神经网络(RVFLNN)建立了目标运动要素解算实时精度的预估计算方法,并结合特定数据集的仿真实验验证了方法的正确性。结果表明,该方法可基于声呐实时探测的目标参数信息,对当前时刻解算的目标运动要素的散布情况进行合理预估,为作战方案生成和作战效能预估等工作奠定了基础。 展开更多
关键词 水下目标运动要素解算 实时精度 随机向量函数接连神经网络
在线阅读 下载PDF
电力系统模糊无功优化的建模及算法 被引量:32
14
作者 宋军英 刘涤尘 陈允平 《电网技术》 EI CSCD 北大核心 2001年第3期22-25,共4页
考虑了电力系统不确定性及模糊因素的存在 ,建立了含多个等式与不等式约束的多目标模糊无功优化模型 ,使用函数联接网络 (FL N)确定及细调隶属函数 ,并采用遗传算法搜索全局最优解。最后用 IEEE- 6节点系统验证了该模型及算法的有效性。
关键词 电力系统 线性规划 模糊集 无功优化 建模 算法
在线阅读 下载PDF
神经网络与计算力矩复合的机器人运动轨迹跟踪控制 被引量:17
15
作者 贺红林 何文丛 +1 位作者 刘文光 封立耀 《农业机械学报》 EI CAS CSCD 北大核心 2013年第5期270-275,共6页
为了实现机器人精密运动控制,在其关节系统引入计算力矩法(CTC)与神经网络复合的控制器,旨在通过CTC实现系统的初步控制并利用神经网络补偿机器人的不确定动力学特性所带来的运动误差。首先,建立了机器人的动力学模型并对其不确定性动... 为了实现机器人精密运动控制,在其关节系统引入计算力矩法(CTC)与神经网络复合的控制器,旨在通过CTC实现系统的初步控制并利用神经网络补偿机器人的不确定动力学特性所带来的运动误差。首先,建立了机器人的动力学模型并对其不确定性动力学量进行了描述;然后,为机器人构建了双闭环控制系统,并依据机器人标称模型规划出CTC控制律;进而,引入函数链神经网络(FLNN)对不确定性动力学量进行估值,并推导出FLNN的学习律;最后,对系统进行了仿真,结果显示,该复合控制器可将关节位置和速度跟踪误差控制在±0.001 rad和±0.001 rad/s之内,且其对机器人的参数变化及外部扰动具有较强的自适应性与鲁棒性。 展开更多
关键词 机器人 轨迹跟踪控制 函数链神经网络 计算力矩控制
在线阅读 下载PDF
基于FLNDO的近空间飞行器鲁棒最优预测控制(英文) 被引量:6
16
作者 都延丽 吴庆宪 +1 位作者 姜长生 周丽 《宇航学报》 EI CAS CSCD 北大核心 2009年第4期1489-1497,共9页
针对有强烈干扰和不确定因素影响的近空间高超声速飞行器,提出了一种鲁棒最优广义预测控制律。控制律由最优广义预测控制律(OGPC)和一种新的泛函连接网络干扰观测器(FLNDO)构成。输出的有限时域预测由泰勒级数的展开实现。飞行中的未建... 针对有强烈干扰和不确定因素影响的近空间高超声速飞行器,提出了一种鲁棒最优广义预测控制律。控制律由最优广义预测控制律(OGPC)和一种新的泛函连接网络干扰观测器(FLNDO)构成。输出的有限时域预测由泰勒级数的展开实现。飞行中的未建模动态以及未知干扰由FLNDO来估计,并且文中也给出了FLNDO和闭环系统的稳定性分析。仿真结果表明对于姿态角和角速率的跟踪问题,设计的控制器达到了满意的控制效果,并且也成功实现了对干扰的抑制以及参数变化的鲁棒性要求。 展开更多
关键词 近空间高超声速飞行器 非线性不确定系统 最优广义预测控制 泛函连接网络 干扰观测器
在线阅读 下载PDF
基于双能γ射线的煤质灰分软测量技术研究 被引量:13
17
作者 程栋 温和 +1 位作者 滕召胜 黎福海 《仪器仪表学报》 EI CAS CSCD 北大核心 2014年第10期2263-2270,共8页
为提高煤质灰分测量精度,提出了基于双能γ射线的煤质灰分智能软测量方法,该方法以137Cs和241Am作为中能和低能的γ射线源,并以探测器检测到的γ计数作为辅助变量,利用混沌算法优化的函数链神经网络实现灰分软测量辨识建模,最后对煤质... 为提高煤质灰分测量精度,提出了基于双能γ射线的煤质灰分智能软测量方法,该方法以137Cs和241Am作为中能和低能的γ射线源,并以探测器检测到的γ计数作为辅助变量,利用混沌算法优化的函数链神经网络实现灰分软测量辨识建模,最后对煤质灰分进行软测量预测和验证。研究结果表明:混沌算法优化的函数链神经网络预测方法的预测精度高,具有较强的泛化能力;基于混沌算法优化函数链神经网络的灰分智能软测量值与实测值的平均误差为0.7%,最大误差为0.9%,煤质灰分测量准确度高。 展开更多
关键词 煤灰分 软测量 函数链神经网络 混沌优化 双能量γ射线
在线阅读 下载PDF
基于模糊自适应变权重算法的函数链神经网络预测方法 被引量:8
18
作者 罗周全 左红艳 +1 位作者 王爽英 王益伟 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第9期2812-2818,共7页
为提高复杂工业系统非线性时间序列预测精度,将工业系统非线性时间序列不同的单个预测模型预测值作为函数链神经网络的原始输入值,并将原始输入值按正交的三角函数扩展得到的数值作为函数链神经网络扩展输入值,在分析函数链神经网络拟... 为提高复杂工业系统非线性时间序列预测精度,将工业系统非线性时间序列不同的单个预测模型预测值作为函数链神经网络的原始输入值,并将原始输入值按正交的三角函数扩展得到的数值作为函数链神经网络扩展输入值,在分析函数链神经网络拟合充要条件的基础上,结合模糊自适应变权重算法计算函数链神经网络权重,建立基于模糊自适应变权重算法的函数链神经网络预测模型。研究结果表明:基于模糊自适应变权重算法的函数链神经网络预测方法的预测精度较高,并且平均误差和预测平方根误差均较小,具有较强的泛化能力;该模糊自适应变权重函数链神经网络预测模型可用于复杂非线性工业系统决策。 展开更多
关键词 函数链神经网络 模糊自适应变权重算法 预测 模糊 神经网络
在线阅读 下载PDF
基于模糊自适应变权重算法的采场冒顶函数链神经网络预报 被引量:8
19
作者 左红艳 罗周全 +1 位作者 王益伟 王爽英 《中国有色金属学报》 EI CAS CSCD 北大核心 2011年第4期894-900,共7页
为提高采场声发射事件率预报精度,将采场声发射事件率不同的单个预测模型的预测值作为函数链神经网络的原始输入值,并将原始输入值按正交的三角函数扩展得到的数值作为函数链神经网络扩展输入值,在分析函数链神经网络拟合充要条件的基础... 为提高采场声发射事件率预报精度,将采场声发射事件率不同的单个预测模型的预测值作为函数链神经网络的原始输入值,并将原始输入值按正交的三角函数扩展得到的数值作为函数链神经网络扩展输入值,在分析函数链神经网络拟合充要条件的基础上,结合模糊自适应变权重算法计算函数链神经网络权重,对采场声发射事件率进行基于模糊自适应变权重算法的函数链神经网络预测,对其预测结果再进行函数链神经网络算法拟合,然后结合采场冒顶尖点突变模型的判别式对采场冒顶进行预报。某铅锌矿采场冒顶预报结果表明,基于模糊自适应变权重算法的函数链神经网络预测方法的预测误差小于0.3%,可实现采场冒顶精确预报。 展开更多
关键词 函数链神经网络 模糊自适应变权重算法 预测 采场冒顶 声发射
在线阅读 下载PDF
柴油机油耗量椭圆齿轮智能测量模型 被引量:4
20
作者 袁文华 鄂加强 +1 位作者 龚金科 王耀南 《农业机械学报》 EI CAS CSCD 北大核心 2006年第7期39-41,共3页
针对柴油机油耗量测量问题,基于椭圆齿轮油耗量测量传感器原理建立了测量模型,并采用函数链神经网络对测量模型进行了校正,以实现柴油机油耗量信息连续输出。应用结果表明,椭圆齿轮油耗量智能测量模型具有较高的精度,其相对误差平均降低... 针对柴油机油耗量测量问题,基于椭圆齿轮油耗量测量传感器原理建立了测量模型,并采用函数链神经网络对测量模型进行了校正,以实现柴油机油耗量信息连续输出。应用结果表明,椭圆齿轮油耗量智能测量模型具有较高的精度,其相对误差平均降低了0.125%,完全可以实现柴油机椭圆齿轮油耗量在线测量。 展开更多
关键词 柴油机 油耗量 测量 函数链神经网络
在线阅读 下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部