The effects of Sr addition and pressure increase on the microstructure and casting defects of a low-pressure die cast (LPDC) AISi7Mg0.3 alloy have been studied. Metallographic and image analysis techniques have been...The effects of Sr addition and pressure increase on the microstructure and casting defects of a low-pressure die cast (LPDC) AISi7Mg0.3 alloy have been studied. Metallographic and image analysis techniques have been used to quantitatively examine the microstructural changes and the amount of porosity occurring at different Sr levels and pressure parameters. The results indicate that an increase in the filling pressure induces lower heat dissipation of the liquid close to the die/core surfaces, with the formation of slightly greater dendrite arms and coarser eutectic Si particles. On the other hand, the increase in the Sr level leads to finer microstructural scale and eutectic Si. The analysed variables, within the experimental conditions, do not affect the morphology of eutectic Si particles. Higher applied pressure and Sr content generate castings with lower amount of porosiW. However, as the filling pressure increases the flow of metal inside the die cavity is more turbulent, leading to the formation of oxide films and cold shots. In the analysed range of experimental conditions, the design of experiment methodology and the analysis of variance have been used to develop statistical models that accurately predict the average size of secondary dendrite arm spacing and the amount of porosity in the low-pressure die cast AISiTMg0.3 alloy.展开更多
Traffic Engineering(TE)enables management of traffic in a manner that optimizes utilization of network resources in an efficient and balanced manner.However,existing TE solutions face issues relating to scalability an...Traffic Engineering(TE)enables management of traffic in a manner that optimizes utilization of network resources in an efficient and balanced manner.However,existing TE solutions face issues relating to scalability and complexity.In recent years,Segment Routing(SR)has emerged as a promising source routing paradigm.As one of the most important applications of SR,Segment Routing Traffic Engineering(SR-TE),which enables a headend to steer traffic along specific paths represented as ordered lists of instructions called segment lists,has the capability to overcome the above challenges due to its flexibility and scalability.In this paper,we conduct a comprehensive survey on SR-TE.A thorough review of SR-TE architecture is provided in the first place,reviewing the core components and implementation of SR-TE such as SR Policy,Flexible Algorithm and SR-native algorithm.Strengths of SR-TE are also discussed,as well as its major challenges.Next,we dwell on the recent SR-TE researches on routing optimization with various intents,e.g.,optimization on link utilization,throughput,QoE(Quality of Experience)and energy consumption.Afterwards,node management for SR-TE are investigated,including SR node deployment and candidate node selection.Finally,we discuss the existing challenges of current research activities and propose several research directions worth of future exploration.展开更多
文摘The effects of Sr addition and pressure increase on the microstructure and casting defects of a low-pressure die cast (LPDC) AISi7Mg0.3 alloy have been studied. Metallographic and image analysis techniques have been used to quantitatively examine the microstructural changes and the amount of porosity occurring at different Sr levels and pressure parameters. The results indicate that an increase in the filling pressure induces lower heat dissipation of the liquid close to the die/core surfaces, with the formation of slightly greater dendrite arms and coarser eutectic Si particles. On the other hand, the increase in the Sr level leads to finer microstructural scale and eutectic Si. The analysed variables, within the experimental conditions, do not affect the morphology of eutectic Si particles. Higher applied pressure and Sr content generate castings with lower amount of porosiW. However, as the filling pressure increases the flow of metal inside the die cavity is more turbulent, leading to the formation of oxide films and cold shots. In the analysed range of experimental conditions, the design of experiment methodology and the analysis of variance have been used to develop statistical models that accurately predict the average size of secondary dendrite arm spacing and the amount of porosity in the low-pressure die cast AISiTMg0.3 alloy.
基金partially supported by Chinese National Research Fund(NSFC)No.62172189 and 61772235Natural Science Foundation of Guangdong Province No.2020A1515010771Science and Technology Program of Guangzhou No.202002030372.
文摘Traffic Engineering(TE)enables management of traffic in a manner that optimizes utilization of network resources in an efficient and balanced manner.However,existing TE solutions face issues relating to scalability and complexity.In recent years,Segment Routing(SR)has emerged as a promising source routing paradigm.As one of the most important applications of SR,Segment Routing Traffic Engineering(SR-TE),which enables a headend to steer traffic along specific paths represented as ordered lists of instructions called segment lists,has the capability to overcome the above challenges due to its flexibility and scalability.In this paper,we conduct a comprehensive survey on SR-TE.A thorough review of SR-TE architecture is provided in the first place,reviewing the core components and implementation of SR-TE such as SR Policy,Flexible Algorithm and SR-native algorithm.Strengths of SR-TE are also discussed,as well as its major challenges.Next,we dwell on the recent SR-TE researches on routing optimization with various intents,e.g.,optimization on link utilization,throughput,QoE(Quality of Experience)and energy consumption.Afterwards,node management for SR-TE are investigated,including SR node deployment and candidate node selection.Finally,we discuss the existing challenges of current research activities and propose several research directions worth of future exploration.