Heat stress can stimulate an increase in body temperature, which is correlated with increased expression of heat shock protein 70 (HSP70) and tumor necrosis factor a (TNFa). The exact mechanism underlying the HSP7...Heat stress can stimulate an increase in body temperature, which is correlated with increased expression of heat shock protein 70 (HSP70) and tumor necrosis factor a (TNFa). The exact mechanism underlying the HSP70 and TNFa induction is unclear. Berberine (BBR) can significantly inhibit the temperature rise caused by heat stress, but the mechanism responsible for the BBR effect on HSP70 and TNFa signaling has not been investigated. The aim of the present study was to explore the relationship between the expression of HSP70 and TNFa and the effects of BBR under heat conditions, using in vivo and in vitro models. The expression levels of HSP70 and YNFa were determined using RT-PCR and Western blotting analyses. The results showed that the levels of HSP70 and TNFa were ap-regulated under heat conditions (40 ~C). HSP70 acted as a chaperone to maintain TNFa homeostasis with rising the temperature, but knockdown of HSP70 could not down-regulate the level of TNFa. Furthermore, TNFa could not influence the expression of HSP70 under aormal and heat conditions. BBR targeted both HSP70 and TNFa by suppressing their gene transcription, thereby decreasing body temperature under heat conditions. In conclusion, BBR has a potential to be developed as a therapeutic strategy for suppressing the thermal effects in hot environments.展开更多
We in vitro examined the existing prognoses of the dissociation constant, KD, between ТАТА- Binding Protein (TBP) and ТАТА box with single nucleotide polymorphism (SNP) associated with human diseases. Five SNP...We in vitro examined the existing prognoses of the dissociation constant, KD, between ТАТА- Binding Protein (TBP) and ТАТА box with single nucleotide polymorphism (SNP) associated with human diseases. Five SNPs of the genes for cytochrome P450 2A6 (associated with lung cancer), β-globin (associated with β-thalassemia), mannose binding lectin (associated with variable immunodeficiency), superoxide dismutase 1 (associated with amyotrophic lateral sclerosis) and triosephosphate isomerase (associated with anemia) fell within the range of –ln(KD;M/KD;WT) between –1.5 and –1 (here KD;WT and KD;M denote the normal ТАТА box and with SNP). The mea-surements using EMSA demonstrated that: 1) all the predictions stating that the affinity between ТВР and ТАТА boxes with SNPs would be reduced were correct;2) the departures of three predictions from the measurements fell within the confidence interval;3) all the predictions consistently underestimated actual mutational damage caused to ТАТА boxes with SNPs (a < 0.05;binomial law) and two of these predictions did so significantly (a < 0.05, Student’s t-test). This consistent underestimation seems to be associated with the damage to the context that modulates ТВP/ТАТА affinity, for example, the contact between the nucleosomal histone H3-Н4 dimer and the core promoter immediately near ТАТА boxes.展开更多
Highlights●Natural variations in the SGT3 promoter TATA box repeats directly modulate gene expression and SGAs content in tubers,providing a novel molecular marker for low-steroidal glycoalkaloids(SGAs)breeding.●The...Highlights●Natural variations in the SGT3 promoter TATA box repeats directly modulate gene expression and SGAs content in tubers,providing a novel molecular marker for low-steroidal glycoalkaloids(SGAs)breeding.●The SGT3 promoter haplotype with(TA)10exhibits signifcantly higher transcriptional activity,correlating with high SGAs content,while the(TA)13haplotype is linked to low SGAs in natural germplasms.展开更多
Myostatin(MSTN) is one of the key factors regulating myogenesis. Because of its role as a negative regulator of muscle mass deposition, much interest has been given to its protein and, in recent years, several studies...Myostatin(MSTN) is one of the key factors regulating myogenesis. Because of its role as a negative regulator of muscle mass deposition, much interest has been given to its protein and, in recent years, several studies have analysed MSTN gene regulation. This review discusses the MSTN gene promoter, focusing on its structure in several animal species, both vertebrate and invertebrate. We report the important binding sites considering their degree of phylogenetic conservation and roles they play in the promoter activity. Finally, we discuss recent studies focusing on MSTN gene regulation via promoter manipulation and the potential applications they have both in medicine and agriculture.展开更多
The importance of microRNA (miRNA) at the post-transcriptional regulation level has recently been recognized in both animals and plants. In recent years, many studies focused on miRNA target identification and funct...The importance of microRNA (miRNA) at the post-transcriptional regulation level has recently been recognized in both animals and plants. In recent years, many studies focused on miRNA target identification and functional analysis. However, little is known about the transcription and regulation of miRNAs themselves. In this study, the transcription start sites (TSSs) for 11 miRNA primary transcripts of soybean from 11 miRNA loci (of 50 loci tested) were cloned by a 5" rapid amplification of cDNA ends (5" RACE) procedure using total RNA from 30-d-old seedlings. The features consistent with a RNA polymerase II mechanism of transcription were found among these miRNA loci. A position weight matrix algorithm was used to identify conserved motifs in miRNA core promoter regions. A canonical TATA box motif was identified upstream of the major start site at 8 (76%) of the mapped miRNA loci. Several cis-acting elements were predicted in the 2 kb 5" to the TSSs. Potential spatial and temporal expression patterns of the miRNAs were found. The target genes for these miRNAs were also predicted and further elucidated for the potential function of the miRNAs. This research provides a molecular basis to explore regulatory mechanisms of miRNA expression, and a way to understand miRNA-mediated regulatory pathways and networks in soybean.展开更多
基金supported by the National Natural Science Foundation of China(Nos.81374006,90713043 and 81073092)
文摘Heat stress can stimulate an increase in body temperature, which is correlated with increased expression of heat shock protein 70 (HSP70) and tumor necrosis factor a (TNFa). The exact mechanism underlying the HSP70 and TNFa induction is unclear. Berberine (BBR) can significantly inhibit the temperature rise caused by heat stress, but the mechanism responsible for the BBR effect on HSP70 and TNFa signaling has not been investigated. The aim of the present study was to explore the relationship between the expression of HSP70 and TNFa and the effects of BBR under heat conditions, using in vivo and in vitro models. The expression levels of HSP70 and YNFa were determined using RT-PCR and Western blotting analyses. The results showed that the levels of HSP70 and TNFa were ap-regulated under heat conditions (40 ~C). HSP70 acted as a chaperone to maintain TNFa homeostasis with rising the temperature, but knockdown of HSP70 could not down-regulate the level of TNFa. Furthermore, TNFa could not influence the expression of HSP70 under aormal and heat conditions. BBR targeted both HSP70 and TNFa by suppressing their gene transcription, thereby decreasing body temperature under heat conditions. In conclusion, BBR has a potential to be developed as a therapeutic strategy for suppressing the thermal effects in hot environments.
文摘We in vitro examined the existing prognoses of the dissociation constant, KD, between ТАТА- Binding Protein (TBP) and ТАТА box with single nucleotide polymorphism (SNP) associated with human diseases. Five SNPs of the genes for cytochrome P450 2A6 (associated with lung cancer), β-globin (associated with β-thalassemia), mannose binding lectin (associated with variable immunodeficiency), superoxide dismutase 1 (associated with amyotrophic lateral sclerosis) and triosephosphate isomerase (associated with anemia) fell within the range of –ln(KD;M/KD;WT) between –1.5 and –1 (here KD;WT and KD;M denote the normal ТАТА box and with SNP). The mea-surements using EMSA demonstrated that: 1) all the predictions stating that the affinity between ТВР and ТАТА boxes with SNPs would be reduced were correct;2) the departures of three predictions from the measurements fell within the confidence interval;3) all the predictions consistently underestimated actual mutational damage caused to ТАТА boxes with SNPs (a < 0.05;binomial law) and two of these predictions did so significantly (a < 0.05, Student’s t-test). This consistent underestimation seems to be associated with the damage to the context that modulates ТВP/ТАТА affinity, for example, the contact between the nucleosomal histone H3-Н4 dimer and the core promoter immediately near ТАТА boxes.
基金financially supported by the Guangdong Major Project of Basic and Applied Basic Research,China(2021B0301030004)the National Natural Science Foundation of China(32360757,U2202206 and 32361143517)the Yunnan Fundamental Research Projects,China(202201AT070037,202501AS070012)。
文摘Highlights●Natural variations in the SGT3 promoter TATA box repeats directly modulate gene expression and SGAs content in tubers,providing a novel molecular marker for low-steroidal glycoalkaloids(SGAs)breeding.●The SGT3 promoter haplotype with(TA)10exhibits signifcantly higher transcriptional activity,correlating with high SGAs content,while the(TA)13haplotype is linked to low SGAs in natural germplasms.
文摘Myostatin(MSTN) is one of the key factors regulating myogenesis. Because of its role as a negative regulator of muscle mass deposition, much interest has been given to its protein and, in recent years, several studies have analysed MSTN gene regulation. This review discusses the MSTN gene promoter, focusing on its structure in several animal species, both vertebrate and invertebrate. We report the important binding sites considering their degree of phylogenetic conservation and roles they play in the promoter activity. Finally, we discuss recent studies focusing on MSTN gene regulation via promoter manipulation and the potential applications they have both in medicine and agriculture.
基金supported by the National High-Tech R&D Program of China (2006AA10Z1F1)the National Core Soybean Genetic Engineering Project, China(2011ZX08004-002)+3 种基金the National Natural Science Foundation of China (60932008, 30971810)the National Basic Research Program of China (2009CB118400)the Ministry of Education Innovation Team of Soybean Molecular Design,Chinathe Innovation Team of the Education Bureau of Heilongjiang Province, China
文摘The importance of microRNA (miRNA) at the post-transcriptional regulation level has recently been recognized in both animals and plants. In recent years, many studies focused on miRNA target identification and functional analysis. However, little is known about the transcription and regulation of miRNAs themselves. In this study, the transcription start sites (TSSs) for 11 miRNA primary transcripts of soybean from 11 miRNA loci (of 50 loci tested) were cloned by a 5" rapid amplification of cDNA ends (5" RACE) procedure using total RNA from 30-d-old seedlings. The features consistent with a RNA polymerase II mechanism of transcription were found among these miRNA loci. A position weight matrix algorithm was used to identify conserved motifs in miRNA core promoter regions. A canonical TATA box motif was identified upstream of the major start site at 8 (76%) of the mapped miRNA loci. Several cis-acting elements were predicted in the 2 kb 5" to the TSSs. Potential spatial and temporal expression patterns of the miRNAs were found. The target genes for these miRNAs were also predicted and further elucidated for the potential function of the miRNAs. This research provides a molecular basis to explore regulatory mechanisms of miRNA expression, and a way to understand miRNA-mediated regulatory pathways and networks in soybean.