Identifying influential nodes in complex networks is of both theoretical and practical importance. Existing methods identify influential nodes based on their positions in the network and assume that the nodes are homo...Identifying influential nodes in complex networks is of both theoretical and practical importance. Existing methods identify influential nodes based on their positions in the network and assume that the nodes are homogeneous. However, node heterogeneity (i.e., different attributes such as interest, energy, age, and so on ) ubiquitously exists and needs to be taken into consideration. In this paper, we conduct an investigation into node attributes and propose a graph signal pro- cessing based centrality (GSPC) method to identify influential nodes considering both the node attributes and the network topology. We first evaluate our GSPC method using two real-world datasets. The results show that our GSPC method effectively identifies influential nodes, which correspond well with the underlying ground truth. This is compatible to the previous eigenvector centrality and principal component centrality methods under circumstances where the nodes are homogeneous. In addition, spreading analysis shows that the GSPC method has a positive effect on the spreading dynamics.展开更多
A Dark Network is a network that cannot be accessed through tradition means. Once uncovered, to any degree, dark network analysis can be accomplished using the SNA software. The output of SNA software includes many me...A Dark Network is a network that cannot be accessed through tradition means. Once uncovered, to any degree, dark network analysis can be accomplished using the SNA software. The output of SNA software includes many measures and metrics. For each of these measures and metric, the output in ORA additionally provides the ability to obtain a rank ordering of the nodes in terms of these measures. We might use this information in decision making concerning best methods to disrupt or deceive a given dark network. In the Noordin Dark network, different nodes were identified as key nodes based upon the metric used. Our goal in this paper is to use methodologies to identify the key players or nodes in a Dark Network in a similar manner as we previously proposed in social networks. We apply two multi-attribute decision making methods, a hybrid AHP & TOPSIS and an average weighted ranks scheme, to analyze these outputs to find the most influential nodes as a function of the decision makers’ inputs. We compare these methods by illustration using the Noordin Dark Network with seventy-nine nodes. We discuss sensitivity analysis that is applied to the criteria weights in order to measure the change in the ranking of the nodes.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.61231010)the Fundamental Research Funds for the Central Universities,China(Grant No.HUST No.2012QN076)
文摘Identifying influential nodes in complex networks is of both theoretical and practical importance. Existing methods identify influential nodes based on their positions in the network and assume that the nodes are homogeneous. However, node heterogeneity (i.e., different attributes such as interest, energy, age, and so on ) ubiquitously exists and needs to be taken into consideration. In this paper, we conduct an investigation into node attributes and propose a graph signal pro- cessing based centrality (GSPC) method to identify influential nodes considering both the node attributes and the network topology. We first evaluate our GSPC method using two real-world datasets. The results show that our GSPC method effectively identifies influential nodes, which correspond well with the underlying ground truth. This is compatible to the previous eigenvector centrality and principal component centrality methods under circumstances where the nodes are homogeneous. In addition, spreading analysis shows that the GSPC method has a positive effect on the spreading dynamics.
文摘A Dark Network is a network that cannot be accessed through tradition means. Once uncovered, to any degree, dark network analysis can be accomplished using the SNA software. The output of SNA software includes many measures and metrics. For each of these measures and metric, the output in ORA additionally provides the ability to obtain a rank ordering of the nodes in terms of these measures. We might use this information in decision making concerning best methods to disrupt or deceive a given dark network. In the Noordin Dark network, different nodes were identified as key nodes based upon the metric used. Our goal in this paper is to use methodologies to identify the key players or nodes in a Dark Network in a similar manner as we previously proposed in social networks. We apply two multi-attribute decision making methods, a hybrid AHP & TOPSIS and an average weighted ranks scheme, to analyze these outputs to find the most influential nodes as a function of the decision makers’ inputs. We compare these methods by illustration using the Noordin Dark Network with seventy-nine nodes. We discuss sensitivity analysis that is applied to the criteria weights in order to measure the change in the ranking of the nodes.