This paper analyzes the applications of four air terminal device(ATD)models(i.e.,the basic model,the box model,the N-point momentum model,the jet main region specification model)in computational fluid dynamics(CF...This paper analyzes the applications of four air terminal device(ATD)models(i.e.,the basic model,the box model,the N-point momentum model,the jet main region specification model)in computational fluid dynamics(CFD)simulation and their performance in case study.A full-scale experiment is performed in an environment chamber,and the measured air velocity and temperature fields are compared with the simulation results by using four ATD models.The velocity and temperature fields are measured by an omni-directional thermo-anemometer system.It demonstrates that the basic model and the box model are not applicable to complicated air terminal devices.At the occupant area,the relative errors between simulated and measured air velocities are less than 20% based on the N-point momentum model and the jet main region specification model.Around the ATD zone,the relative error between the numerical and measured air velocity based on the jet main region specification model is less than 15%.The jet main region specification model is proved to be an applicable approach and a more accurate way to study the airflow pattern around the ATD with complicated geometry.展开更多
The interannual variation of the East Asian upper-tropospheric westerly jet (EAJ) significantly affects East Asian climate in summer. Identifying its performance in model prediction may provide us another viewpoint,...The interannual variation of the East Asian upper-tropospheric westerly jet (EAJ) significantly affects East Asian climate in summer. Identifying its performance in model prediction may provide us another viewpoint, from the perspective of uppertropospheric circulation, to understand the predictability of summer climate anomalies in East Asia. This study presents a comprehensive assessment of year-to-year variability of the EAJ based on retrospective seasonal forecasts, initiated from 1 May, in the five state-of-the-art coupled models from ENSEMBLES during 1960-2005. It is found that the coupled models show certain capability in describing the interannual meridional displacement of the EAJ, which reflects the models' performance in the first leading empirical orthogonal function (EOF) mode. This capability is mainly shown over the region south of the EAJ axis. Additionally, the models generally capture well the main features of atmospheric circulation and SST anomalies related to the interannual meridional displacement of the EAJ. Further analysis suggests that the predicted warm SST anomalies in the concurrent summer over the tropical eastern Pacific and northern Indian Ocean are the two main sources of the potential prediction skill of the southward shift of the EAJ. In contrast, the models are powerless in describing the variation over the region north of the EAJ axis, associated with the meridional displacement, and interannual intensity change of the EAJ, the second leading EOF mode, meaning it still remains a challenge to better predict the EAJ and, subsequently, summer climate in East Asia, using current coupled models.展开更多
Implementation of an opposing jet in design of a hypersonic blunt body significantly modifies the external flowfield and yields a considerable reduction in the aerodynamic drag.This study aims to investigate the effec...Implementation of an opposing jet in design of a hypersonic blunt body significantly modifies the external flowfield and yields a considerable reduction in the aerodynamic drag.This study aims to investigate the effects of flowfield modeling parameters of injection and freestream on the flow structure and aerodynamics of a blunt body with an opposing jet in hypersonic flow.Reynolds-Averaged Navier-Stokes(RANS)equations with a Shear Stress Transport(SST)turbulence model are employed to simulate the intricate jet flow interaction.Through utilizing a Non-Intrusive Polynomial Chaos(NIPC)method to construct surrogates,a functional relation is established between input modeling parameters and output flowfield and aerodynamic quantities in concern.Sobol indices in sensitivity analysis are introduced to represent the relative contribution of each parameter.It is found that variations in modeling parameters produce large variations in the flow structure and aerodynamics.The jet-to-freestream total-pressure ratio,jet Mach number,and freestream Mach number are the major contributors to variation in surface pressure,demonstrating an evident location-dependent behavior.The penetration length of injection,reattachment angle of the shear layer,and aerodynamic drag are also most sensitive to the three crucial parameters above.In comparison,the contributions of freestream temperature,freestream density,and jet total temperature are nearly negligible.展开更多
Slurry jets in a static uniform environment were simulated with a two-phase mixture model in which flow-particle interactions were considered. A standard k-e turbulence model was chosen to close the governing equation...Slurry jets in a static uniform environment were simulated with a two-phase mixture model in which flow-particle interactions were considered. A standard k-e turbulence model was chosen to close the governing equations. The computational results were in agreement with previous laboratory measurements. The characteristics of the two-phase flow field and the influences of hydraulic and geometric parameters on the distribution of the slurry jets were analyzed on the basis of the computational results. The calculated results reveal that if the initial velocity of the slurry jet is high, the jet spreads less in the radial direction. When the slurry jet is less influenced by the ambient fluid (when the Stokes number St is relatively large), the turbulent kinetic energy k and turbulent dissipation rate e, which are relatively concentrated around the jet axis, decrease more rapidly after the slurry jet passes through the nozzle. For different values of St, the radial distributions of streamwise velocity and particle volume fraction are both self-similar and fit a Gaussian profile after the slurry jet fully develops. The decay rate of the particle velocity is lower than that of water velocity along the jet axis, and the axial distributions of the centerline particle streamwise velocity are self-similar along the jet axis. The pattern of particle dispersion depends on the Stokes number St. When St = 0.39, the panicle dispersion along the radial direction is considerable, and the relative velocity is very low due to the low dynamic response time. When St = 3.08, the dispersion of particles along the radial direction is very little, and most of the particles have high relative velocities along the streamwise direction.展开更多
Some experiments were made for the buoyant jet from a square orifice with a square disc placed on it in static ambient and concentration along the axis in self-similar area behind disc was measured. And at the same ti...Some experiments were made for the buoyant jet from a square orifice with a square disc placed on it in static ambient and concentration along the axis in self-similar area behind disc was measured. And at the same time a three-dimensional mathematical model was established to simulate the whole flowing under different conditions. All the results predicted by the numerical calculation were substantiated by the experiments. The results were compared with experiential formula for obstructed round buoyant ver- tical jets in static ambient and it was found that the two concentration distributions had good accordance. Star shape of temperature isolines on cross-sections in the near areas from the disc was found and it was a very special figure for obstructed square buoyant vertical jets with a square disc. The shape will transform to concentric circles gradually alike to the round buoyant vertical jet in self-similar area with increasing of the distance from the disc.展开更多
A CFD code has been developed based on the conservation principles describing gas and solid flow in fluidized beds. This code is employed to simulate not only the spatiotemporal gas and solid phase velocities and v...A CFD code has been developed based on the conservation principles describing gas and solid flow in fluidized beds. This code is employed to simulate not only the spatiotemporal gas and solid phase velocities and voidage profiles in a two dimensional bed but also fluid dynamics in the jet region. The computational results show that gas flow direction is upward in the entire bed accompanied with random local circulations, whilst solid flow direction is upward at the center and downward near the wall. The radical reason of strong back mixing of solid particles and good transfer behavior between two phases is that the jet entrains solid particles. Numerical calculation indicates that gas velocity, solid velocity and pressure profile have a significant change when the voidage is 0 8. The simulated time averaged voidage profiles agree with the experimental results and simulated data reported by Gidaspow and Ettehadieh(1983). Therefore, CFD model can be regarded as a useful tool to study the jet characteristics in dense gas solid fluidized beds.展开更多
Gas turbines are considered as one of the leading internal combustion engines in modern air transportation due to its favourable power to weight ratio and its continuous combustion process. Recent research focus has b...Gas turbines are considered as one of the leading internal combustion engines in modern air transportation due to its favourable power to weight ratio and its continuous combustion process. Recent research focus has been concerned with performance improvements aimed at reduced fuel consumption and hence reduced impact on the environment. This study is aimed at using theoretical and computational methods to model the operation and performance a turbojet gas turbine engine. The commercial software GasTurb13 was used for the theoretical simulation while Microsoft Excel was used for the analytical study. GasTurb13 solved the model using pseudo-perfect gas models i.e. component maps since the specific gas ratio could not be inputted into the solver. The effect of changes in the Mach number and altitude on the engine performance was studied. Also the effect of changes in the compressor pressure ratio, the turbine inlet temperature and the afterburner exit temperature were also studied. Results obtained showed the optimum pressure ratio at maximum thrust constraint to be 16.78 for the turbojet engine operating at Mach number (Ma) = 0.8 and altitude = 10,000 m, Turbine inlet temperature (TIT) = 1200 K and Afterburner exit temperature = 1800 K.展开更多
In some data centers,cold air is required to act on the cabinet to achieve cooling requirements,and the mixing of cold air and hot air reduces the utilization efficiency of cold air.In order to solve this problem,a je...In some data centers,cold air is required to act on the cabinet to achieve cooling requirements,and the mixing of cold air and hot air reduces the utilization efficiency of cold air.In order to solve this problem,a jet cooling model is established to solve the optimal position of the outlet through the movement of cold air.展开更多
The major features of the westerly jets in boreal winter, consisting of the Middle East jet stream (MEJS), East Asian jet stream (EAJS) and North Atlantic jet stream (NAJS), simulated by a newly developed climat...The major features of the westerly jets in boreal winter, consisting of the Middle East jet stream (MEJS), East Asian jet stream (EAJS) and North Atlantic jet stream (NAJS), simulated by a newly developed climate system model, were evaluated with an emphasis on the meridional location of the westerly jet axis (WJA). The model was found to exhibit fairly good performance in simulating the EAJS and NAJS, whereas the MEJS was much weaker and indistinguishable in the model. Compared with the intensity bias, the southward shift of the WJA seems to be a more remarkable deficiency. From the perspective of Ertel potential vorticity, the profiles along different westerly jet cores in the model were similar with those in the reanalysis but all shifted southward, indicating an equatorward displacement of the dynamic tropopause and associated climatology. Diagnosis of the thermodynamic equation revealed that the model produced an overall stronger heating source and the streamfunction quantifying the convection and overturning Hadley circulation shifted southward significantly in the middle and upper troposphere. The two maximum centers of eddy kinetic energy, corresponding to the EAJS and NAJS, were reproduced, whereas they all shifted southwards with a much reduced intensity. A lack of transient eddy activity will reduce the efficiency of poleward heat transport, which may partially contribute to the meridionally non-uniform cooling in the middle and upper troposphere. As the WJA is closely related to the location of the Hadley cell, tropopause and transient eddy activity, the accurate simulation of westerly jets will greatly improve the atmospheric general circulation and associated climatology in the model.展开更多
By means of the computational fluid dynamics software Fluent 6.3, a mathematical model of three-dimensional three-phase fluid flow field in the molten bath of electric arc furnace (EAF) with side accessorial oxygen ...By means of the computational fluid dynamics software Fluent 6.3, a mathematical model of three-dimensional three-phase fluid flow field in the molten bath of electric arc furnace (EAF) with side accessorial oxygen lances was developed to study the transient phenomena of oxygen jet impingement on the molten steel and the molten slag. The water modeling experiment was carried out to verify the simulation results. The impingement of the supersonic oxygen jet caused impact dent on the molten steel surface accordingly. The area of impact dent changed almost in linear relationship to flow rate of oxygen jet, which can be expressed by a deduced mathematical equation. And the relationship between the impact force of oxygen iet and the correspondingly formed apparent static pressure on molten bath was obtained, which was in linear relationship and a direct proportion, and can also be expressed by a deduced mathematical equation.展开更多
Jet pipe electro-hydraulic servo valve is the heart of feedback control systems,and it is one of the mechatronic components used for precision flow control application.It consists of several precision and ddicate comp...Jet pipe electro-hydraulic servo valve is the heart of feedback control systems,and it is one of the mechatronic components used for precision flow control application.It consists of several precision and ddicate components.The performance of the jet pipe servo valve depends on many parameters.During the developmental stage,it is very difficult to ascertain the function parameters.The steady-state analysis of jet pipe electro-hydraulic servo valve has been made to simulate its fluid characteristics (flowin,flow-out,leakage flow,recovery or load pressure,etc.) by mathematical modeling.Theoretical model was conducted on various affecting parameters on the pressure,the main flow rate of fluid,or leakage flow through the receiver holes.The major parameters studied are jet pipe nozzle diameters,receiver hole diameters,angle between the two centre-lines of receiver hole,nozzle offset,and nozzle stand-of distance.In this paper the research is important to determine and optimize the structural parameters of jet pipe servo valve.Thus,equations of the pressure and flow characteristics are set up and the optimal structural parameters of jet pipe are established.展开更多
Here a Gaussian Shell Model Array (GSMA) beam is used to investigate the propagation characteristics in the jet engine exhaust region. It has great significance to improve various optical systems for wide application ...Here a Gaussian Shell Model Array (GSMA) beam is used to investigate the propagation characteristics in the jet engine exhaust region. It has great significance to improve various optical systems for wide application in trapping cold atoms, creating gratings, and atmospheric optical communication. We calculate analytical formulas for the spectral density (SD) and the propagation factors M<sub>x</sub>2</sup> and M<sub>y</sub>2</sup> of a GSMA beam. The influence of inner scale of turbulence in the jet engine exhaust region on its power spectrum has been also analyzed. According to these results, the influence of turbulence in a jet engine exhaust on a GSMA beam has been reduced by changing the parameters of light source and turbulence. For example, it is an excellent tool for mitigation of the jet engine exhaust-induced anisotropy of turbulence to increase the source coherence length, the root-mean-squared (rms) beam width, the wavelength or reduce the outer scale of turbulence.展开更多
The supersonic oxygen supply technology, including the coherent supersonic jet and the conventional supersonic jet, is now widely adopted in electric arc furnace steelmaking process to increase the bath stirring, reac...The supersonic oxygen supply technology, including the coherent supersonic jet and the conventional supersonic jet, is now widely adopted in electric arc furnace steelmaking process to increase the bath stirring, reaction rates and energy efficiency. However, there has been limited study on the impact characteristics of the coherent supersonic jet and the conventional supersonic jet. Thus, integrating theoretical models and numerical simulations, an optimized theoretical model was developed to calculate the volume of the impact zone generated by coherent and conventional supersonic jets. The optimized theoretical model was validated by water model experiments. The results show that the jet impact zone volume with coherent supersonic jet is much larger than that with conventional supersonic jet at the same lance height. The kd value, a newly defined variable that is the product of the dimensionless quantity of velocity and free distance, reflects the velocity attenuation and the potential core length of the main supersonic jet, which is a key parameter of the optimized theoretical model. The optimized theoretical model can well predict the jet impact zone volumes of coherent and conventional supersonic jets with the error no more than 3.62 and 9.37%, respectively.展开更多
为明晰喷灌低压射流在空气外场的流动行为,该文建立了射程与喷头仰角和喷头压力的关系,基于VOF(Volume of Fluid)气液两相流模型的数值模拟和射流实验,分别获取喷头15°、30°和45°仰角下喷灌装置压力和射流射程的关系曲线...为明晰喷灌低压射流在空气外场的流动行为,该文建立了射程与喷头仰角和喷头压力的关系,基于VOF(Volume of Fluid)气液两相流模型的数值模拟和射流实验,分别获取喷头15°、30°和45°仰角下喷灌装置压力和射流射程的关系曲线,并选取喷灌装置压力分别为0.4 MPa、0.6 MPa和0.8 MPa时的射流形态与实验对比。结果表明:数值模拟与实验的射程值变化趋势一致,0.6 MPa和0.8 MPa时两者较为接近;低压水射流的流动形态可分为实心水柱段、过渡段和雾化段;数值和实验结果存在差异的主要原因是射流下游主射流尺度和破碎液滴的尺度逐渐接近,实验容易受到环境因素干扰,且VOF方法受限于网格精度不能很好捕捉破碎液滴,后续可优化数值方法进一步研究。展开更多
文摘This paper analyzes the applications of four air terminal device(ATD)models(i.e.,the basic model,the box model,the N-point momentum model,the jet main region specification model)in computational fluid dynamics(CFD)simulation and their performance in case study.A full-scale experiment is performed in an environment chamber,and the measured air velocity and temperature fields are compared with the simulation results by using four ATD models.The velocity and temperature fields are measured by an omni-directional thermo-anemometer system.It demonstrates that the basic model and the box model are not applicable to complicated air terminal devices.At the occupant area,the relative errors between simulated and measured air velocities are less than 20% based on the N-point momentum model and the jet main region specification model.Around the ATD zone,the relative error between the numerical and measured air velocity based on the jet main region specification model is less than 15%.The jet main region specification model is proved to be an applicable approach and a more accurate way to study the airflow pattern around the ATD with complicated geometry.
基金supported by the National Natural Science Foundation of China(Grant Nos.41375086,41320104007 and 41305067)
文摘The interannual variation of the East Asian upper-tropospheric westerly jet (EAJ) significantly affects East Asian climate in summer. Identifying its performance in model prediction may provide us another viewpoint, from the perspective of uppertropospheric circulation, to understand the predictability of summer climate anomalies in East Asia. This study presents a comprehensive assessment of year-to-year variability of the EAJ based on retrospective seasonal forecasts, initiated from 1 May, in the five state-of-the-art coupled models from ENSEMBLES during 1960-2005. It is found that the coupled models show certain capability in describing the interannual meridional displacement of the EAJ, which reflects the models' performance in the first leading empirical orthogonal function (EOF) mode. This capability is mainly shown over the region south of the EAJ axis. Additionally, the models generally capture well the main features of atmospheric circulation and SST anomalies related to the interannual meridional displacement of the EAJ. Further analysis suggests that the predicted warm SST anomalies in the concurrent summer over the tropical eastern Pacific and northern Indian Ocean are the two main sources of the potential prediction skill of the southward shift of the EAJ. In contrast, the models are powerless in describing the variation over the region north of the EAJ axis, associated with the meridional displacement, and interannual intensity change of the EAJ, the second leading EOF mode, meaning it still remains a challenge to better predict the EAJ and, subsequently, summer climate in East Asia, using current coupled models.
文摘Implementation of an opposing jet in design of a hypersonic blunt body significantly modifies the external flowfield and yields a considerable reduction in the aerodynamic drag.This study aims to investigate the effects of flowfield modeling parameters of injection and freestream on the flow structure and aerodynamics of a blunt body with an opposing jet in hypersonic flow.Reynolds-Averaged Navier-Stokes(RANS)equations with a Shear Stress Transport(SST)turbulence model are employed to simulate the intricate jet flow interaction.Through utilizing a Non-Intrusive Polynomial Chaos(NIPC)method to construct surrogates,a functional relation is established between input modeling parameters and output flowfield and aerodynamic quantities in concern.Sobol indices in sensitivity analysis are introduced to represent the relative contribution of each parameter.It is found that variations in modeling parameters produce large variations in the flow structure and aerodynamics.The jet-to-freestream total-pressure ratio,jet Mach number,and freestream Mach number are the major contributors to variation in surface pressure,demonstrating an evident location-dependent behavior.The penetration length of injection,reattachment angle of the shear layer,and aerodynamic drag are also most sensitive to the three crucial parameters above.In comparison,the contributions of freestream temperature,freestream density,and jet total temperature are nearly negligible.
基金supported by the National Natural Science Foundation of China (Grant No. 11172218)the Fundamental Research Funds for the Central Universities (Grant No. 2012206020209)
文摘Slurry jets in a static uniform environment were simulated with a two-phase mixture model in which flow-particle interactions were considered. A standard k-e turbulence model was chosen to close the governing equations. The computational results were in agreement with previous laboratory measurements. The characteristics of the two-phase flow field and the influences of hydraulic and geometric parameters on the distribution of the slurry jets were analyzed on the basis of the computational results. The calculated results reveal that if the initial velocity of the slurry jet is high, the jet spreads less in the radial direction. When the slurry jet is less influenced by the ambient fluid (when the Stokes number St is relatively large), the turbulent kinetic energy k and turbulent dissipation rate e, which are relatively concentrated around the jet axis, decrease more rapidly after the slurry jet passes through the nozzle. For different values of St, the radial distributions of streamwise velocity and particle volume fraction are both self-similar and fit a Gaussian profile after the slurry jet fully develops. The decay rate of the particle velocity is lower than that of water velocity along the jet axis, and the axial distributions of the centerline particle streamwise velocity are self-similar along the jet axis. The pattern of particle dispersion depends on the Stokes number St. When St = 0.39, the panicle dispersion along the radial direction is considerable, and the relative velocity is very low due to the low dynamic response time. When St = 3.08, the dispersion of particles along the radial direction is very little, and most of the particles have high relative velocities along the streamwise direction.
基金Project supported by the Planned Item for Excellent Young Teachers Invested by Education Ministry of China (No.2003-99)
文摘Some experiments were made for the buoyant jet from a square orifice with a square disc placed on it in static ambient and concentration along the axis in self-similar area behind disc was measured. And at the same time a three-dimensional mathematical model was established to simulate the whole flowing under different conditions. All the results predicted by the numerical calculation were substantiated by the experiments. The results were compared with experiential formula for obstructed round buoyant ver- tical jets in static ambient and it was found that the two concentration distributions had good accordance. Star shape of temperature isolines on cross-sections in the near areas from the disc was found and it was a very special figure for obstructed square buoyant vertical jets with a square disc. The shape will transform to concentric circles gradually alike to the round buoyant vertical jet in self-similar area with increasing of the distance from the disc.
文摘A CFD code has been developed based on the conservation principles describing gas and solid flow in fluidized beds. This code is employed to simulate not only the spatiotemporal gas and solid phase velocities and voidage profiles in a two dimensional bed but also fluid dynamics in the jet region. The computational results show that gas flow direction is upward in the entire bed accompanied with random local circulations, whilst solid flow direction is upward at the center and downward near the wall. The radical reason of strong back mixing of solid particles and good transfer behavior between two phases is that the jet entrains solid particles. Numerical calculation indicates that gas velocity, solid velocity and pressure profile have a significant change when the voidage is 0 8. The simulated time averaged voidage profiles agree with the experimental results and simulated data reported by Gidaspow and Ettehadieh(1983). Therefore, CFD model can be regarded as a useful tool to study the jet characteristics in dense gas solid fluidized beds.
文摘Gas turbines are considered as one of the leading internal combustion engines in modern air transportation due to its favourable power to weight ratio and its continuous combustion process. Recent research focus has been concerned with performance improvements aimed at reduced fuel consumption and hence reduced impact on the environment. This study is aimed at using theoretical and computational methods to model the operation and performance a turbojet gas turbine engine. The commercial software GasTurb13 was used for the theoretical simulation while Microsoft Excel was used for the analytical study. GasTurb13 solved the model using pseudo-perfect gas models i.e. component maps since the specific gas ratio could not be inputted into the solver. The effect of changes in the Mach number and altitude on the engine performance was studied. Also the effect of changes in the compressor pressure ratio, the turbine inlet temperature and the afterburner exit temperature were also studied. Results obtained showed the optimum pressure ratio at maximum thrust constraint to be 16.78 for the turbojet engine operating at Mach number (Ma) = 0.8 and altitude = 10,000 m, Turbine inlet temperature (TIT) = 1200 K and Afterburner exit temperature = 1800 K.
文摘In some data centers,cold air is required to act on the cabinet to achieve cooling requirements,and the mixing of cold air and hot air reduces the utilization efficiency of cold air.In order to solve this problem,a jet cooling model is established to solve the optimal position of the outlet through the movement of cold air.
基金supported by the National Natural Science Foundation of China(Grant Nos.41130963,41105044,and 41105045)the National Basic Research and Development(973)Program of China(Grant No.2012CB955901)the Research Fund for the Doctoral Program of Higher Education(Grant No.20100091110003)
文摘The major features of the westerly jets in boreal winter, consisting of the Middle East jet stream (MEJS), East Asian jet stream (EAJS) and North Atlantic jet stream (NAJS), simulated by a newly developed climate system model, were evaluated with an emphasis on the meridional location of the westerly jet axis (WJA). The model was found to exhibit fairly good performance in simulating the EAJS and NAJS, whereas the MEJS was much weaker and indistinguishable in the model. Compared with the intensity bias, the southward shift of the WJA seems to be a more remarkable deficiency. From the perspective of Ertel potential vorticity, the profiles along different westerly jet cores in the model were similar with those in the reanalysis but all shifted southward, indicating an equatorward displacement of the dynamic tropopause and associated climatology. Diagnosis of the thermodynamic equation revealed that the model produced an overall stronger heating source and the streamfunction quantifying the convection and overturning Hadley circulation shifted southward significantly in the middle and upper troposphere. The two maximum centers of eddy kinetic energy, corresponding to the EAJS and NAJS, were reproduced, whereas they all shifted southwards with a much reduced intensity. A lack of transient eddy activity will reduce the efficiency of poleward heat transport, which may partially contribute to the meridionally non-uniform cooling in the middle and upper troposphere. As the WJA is closely related to the location of the Hadley cell, tropopause and transient eddy activity, the accurate simulation of westerly jets will greatly improve the atmospheric general circulation and associated climatology in the model.
基金Sponsored by National Key Technology Research and Development Program in 11th Five-year Plan of China(2008AF33B01)Fuzhou University Foundation for Development of Science and Technology of China(0020-600588)
文摘By means of the computational fluid dynamics software Fluent 6.3, a mathematical model of three-dimensional three-phase fluid flow field in the molten bath of electric arc furnace (EAF) with side accessorial oxygen lances was developed to study the transient phenomena of oxygen jet impingement on the molten steel and the molten slag. The water modeling experiment was carried out to verify the simulation results. The impingement of the supersonic oxygen jet caused impact dent on the molten steel surface accordingly. The area of impact dent changed almost in linear relationship to flow rate of oxygen jet, which can be expressed by a deduced mathematical equation. And the relationship between the impact force of oxygen iet and the correspondingly formed apparent static pressure on molten bath was obtained, which was in linear relationship and a direct proportion, and can also be expressed by a deduced mathematical equation.
基金National Science and Technology Supporting Program,China(No.2011BAJ02B06)Aeronautical Science Foundation of China(No.20090738003)National Natural Science Foundations of China(No.51175378,No.50775161)
文摘Jet pipe electro-hydraulic servo valve is the heart of feedback control systems,and it is one of the mechatronic components used for precision flow control application.It consists of several precision and ddicate components.The performance of the jet pipe servo valve depends on many parameters.During the developmental stage,it is very difficult to ascertain the function parameters.The steady-state analysis of jet pipe electro-hydraulic servo valve has been made to simulate its fluid characteristics (flowin,flow-out,leakage flow,recovery or load pressure,etc.) by mathematical modeling.Theoretical model was conducted on various affecting parameters on the pressure,the main flow rate of fluid,or leakage flow through the receiver holes.The major parameters studied are jet pipe nozzle diameters,receiver hole diameters,angle between the two centre-lines of receiver hole,nozzle offset,and nozzle stand-of distance.In this paper the research is important to determine and optimize the structural parameters of jet pipe servo valve.Thus,equations of the pressure and flow characteristics are set up and the optimal structural parameters of jet pipe are established.
文摘Here a Gaussian Shell Model Array (GSMA) beam is used to investigate the propagation characteristics in the jet engine exhaust region. It has great significance to improve various optical systems for wide application in trapping cold atoms, creating gratings, and atmospheric optical communication. We calculate analytical formulas for the spectral density (SD) and the propagation factors M<sub>x</sub>2</sup> and M<sub>y</sub>2</sup> of a GSMA beam. The influence of inner scale of turbulence in the jet engine exhaust region on its power spectrum has been also analyzed. According to these results, the influence of turbulence in a jet engine exhaust on a GSMA beam has been reduced by changing the parameters of light source and turbulence. For example, it is an excellent tool for mitigation of the jet engine exhaust-induced anisotropy of turbulence to increase the source coherence length, the root-mean-squared (rms) beam width, the wavelength or reduce the outer scale of turbulence.
文摘The supersonic oxygen supply technology, including the coherent supersonic jet and the conventional supersonic jet, is now widely adopted in electric arc furnace steelmaking process to increase the bath stirring, reaction rates and energy efficiency. However, there has been limited study on the impact characteristics of the coherent supersonic jet and the conventional supersonic jet. Thus, integrating theoretical models and numerical simulations, an optimized theoretical model was developed to calculate the volume of the impact zone generated by coherent and conventional supersonic jets. The optimized theoretical model was validated by water model experiments. The results show that the jet impact zone volume with coherent supersonic jet is much larger than that with conventional supersonic jet at the same lance height. The kd value, a newly defined variable that is the product of the dimensionless quantity of velocity and free distance, reflects the velocity attenuation and the potential core length of the main supersonic jet, which is a key parameter of the optimized theoretical model. The optimized theoretical model can well predict the jet impact zone volumes of coherent and conventional supersonic jets with the error no more than 3.62 and 9.37%, respectively.