A double haploid (DH) population of rice (Oryza sativa L.) derived from anther culture of ZYQ8/JX17, a typical indica and japonica hybrid, was used for genetic analysis of rice peduncle vascular system and panicle tra...A double haploid (DH) population of rice (Oryza sativa L.) derived from anther culture of ZYQ8/JX17, a typical indica and japonica hybrid, was used for genetic analysis of rice peduncle vascular system and panicle traits. The number of large vascular bundles (LVB), the number of small vascular bundles (SVB) in the peduncle, and the panicle traits including the number of primary rachis branches (PRB), the number of spikelets per panicle (SNP), peduncle top diameter (PTD), and panicle length (PL) were investigated in the parents and DH lines. The quantitative trait loci (QTLs) for each trait were analyzed based on the constructed molecular linkage map of this population. Three QTLs for LVB (qLVB_1, qLVB_6 and qLVB_7) were detected on chromosomes 1, 6, and 7, respectively. Two putative QTLs for SVB (qSVB_4 and qSVB_6) were mapped on chromosomes 4 and 6 respectively. Four QTLs (qPRB_4a, qPRB_4b, qPRB_6 and qPRB_7) on chromosomes 4, 6, and 7, respectively, were detected for PRB. Three QTLs (qSPN_4a, qSPN_4b and qSPN_6) were identified on chromosomes 4 and 6, respectively, which could significantly affect SPN. Five QTLs for PTD (qPTD_2, qPTD_5, qPTD_6, qPTD_8 and qPTD_12) were identified on chromosomes 2, 5, 6, 8, and 12, respectively. Three QTLs for PL (qPL_4, qPL_6 and qPL_8) were detected on chromosomes 4, 6, and 8, respectively. Clustering of QTLs, such as qLVB_6, qSVB_6, qSNP_6, qPTD_6, and qPL_6 detected in the interval G122_G1314b on chromosome 6, was found. These results suggest that some QTLs for peduncle vascular bundle system are possibly responsible for the panicle traits.展开更多
Relationships between fluorescence parameters and membrane lipid peroxidation in leaves of indica and japonica rice (Oryza sativa L.) during later growth stage were studied under chilling temperature and strong light ...Relationships between fluorescence parameters and membrane lipid peroxidation in leaves of indica and japonica rice (Oryza sativa L.) during later growth stage were studied under chilling temperature and strong light stress conditions. Results showed that D1 protein contents of PSⅡ in photosynthetic apparatus dropped, the generation of antheraxanthin (A) and zeaxanthin (Z) of xanthophyll cycle were inhibited partly, PSⅡ photochemical efficiency (F v/F m)and non-photochemical quenching (q N) were also decreased obviously. In addition, endogenous active oxygen scavenger—superoxide dismutase (SOD) reduced, superoxide anion radical (O -· 2) and malondialdehyde (MDA) accumulated, as a result, photooxidation of leaves occurred under chilling temperature and strong light stress conditions. Obvious differences in the changes of the above mentioned physiological parameters between indica and japonica rice were observed. Experiments in leaves treated with inhibitors under chilling temperature and strong light conditions showed that indica rice was more sensitive to chilling temperature with strong light and subjected to photooxidation more than japonica rice. Notable positive correlation between D1 protein contents and F v/F m or (A+Z)/(A+Z+V), and a marked negative correlation between F v/F m and MDA contents were obtained by regression analysis in indica and japonica rice during chilling temperature and strong light conditions. According to the facts mentioned above, it was inferred that PSⅡ photochemical efficiency(F v/F m) was the key index to forecast for the prediction of photooxidation under stress circumstances and the physiological basis were the synthetic capacity of D1 protein and the protection of xanthophyll cycle.展开更多
文摘A double haploid (DH) population of rice (Oryza sativa L.) derived from anther culture of ZYQ8/JX17, a typical indica and japonica hybrid, was used for genetic analysis of rice peduncle vascular system and panicle traits. The number of large vascular bundles (LVB), the number of small vascular bundles (SVB) in the peduncle, and the panicle traits including the number of primary rachis branches (PRB), the number of spikelets per panicle (SNP), peduncle top diameter (PTD), and panicle length (PL) were investigated in the parents and DH lines. The quantitative trait loci (QTLs) for each trait were analyzed based on the constructed molecular linkage map of this population. Three QTLs for LVB (qLVB_1, qLVB_6 and qLVB_7) were detected on chromosomes 1, 6, and 7, respectively. Two putative QTLs for SVB (qSVB_4 and qSVB_6) were mapped on chromosomes 4 and 6 respectively. Four QTLs (qPRB_4a, qPRB_4b, qPRB_6 and qPRB_7) on chromosomes 4, 6, and 7, respectively, were detected for PRB. Three QTLs (qSPN_4a, qSPN_4b and qSPN_6) were identified on chromosomes 4 and 6, respectively, which could significantly affect SPN. Five QTLs for PTD (qPTD_2, qPTD_5, qPTD_6, qPTD_8 and qPTD_12) were identified on chromosomes 2, 5, 6, 8, and 12, respectively. Three QTLs for PL (qPL_4, qPL_6 and qPL_8) were detected on chromosomes 4, 6, and 8, respectively. Clustering of QTLs, such as qLVB_6, qSVB_6, qSNP_6, qPTD_6, and qPL_6 detected in the interval G122_G1314b on chromosome 6, was found. These results suggest that some QTLs for peduncle vascular bundle system are possibly responsible for the panicle traits.
文摘Relationships between fluorescence parameters and membrane lipid peroxidation in leaves of indica and japonica rice (Oryza sativa L.) during later growth stage were studied under chilling temperature and strong light stress conditions. Results showed that D1 protein contents of PSⅡ in photosynthetic apparatus dropped, the generation of antheraxanthin (A) and zeaxanthin (Z) of xanthophyll cycle were inhibited partly, PSⅡ photochemical efficiency (F v/F m)and non-photochemical quenching (q N) were also decreased obviously. In addition, endogenous active oxygen scavenger—superoxide dismutase (SOD) reduced, superoxide anion radical (O -· 2) and malondialdehyde (MDA) accumulated, as a result, photooxidation of leaves occurred under chilling temperature and strong light stress conditions. Obvious differences in the changes of the above mentioned physiological parameters between indica and japonica rice were observed. Experiments in leaves treated with inhibitors under chilling temperature and strong light conditions showed that indica rice was more sensitive to chilling temperature with strong light and subjected to photooxidation more than japonica rice. Notable positive correlation between D1 protein contents and F v/F m or (A+Z)/(A+Z+V), and a marked negative correlation between F v/F m and MDA contents were obtained by regression analysis in indica and japonica rice during chilling temperature and strong light conditions. According to the facts mentioned above, it was inferred that PSⅡ photochemical efficiency(F v/F m) was the key index to forecast for the prediction of photooxidation under stress circumstances and the physiological basis were the synthetic capacity of D1 protein and the protection of xanthophyll cycle.