植物引导编辑技术(Plant Prime Editing,PPE)为植物基因组的精准改良提供了全新途径,克服了传统基因编辑方法中依赖双链断裂和外源供体DNA的局限性,不仅可以实现任意类型碱基替换,还可以进行小片段乃至大范围片段的精准插入和删除,并且...植物引导编辑技术(Plant Prime Editing,PPE)为植物基因组的精准改良提供了全新途径,克服了传统基因编辑方法中依赖双链断裂和外源供体DNA的局限性,不仅可以实现任意类型碱基替换,还可以进行小片段乃至大范围片段的精准插入和删除,并且脱靶率较低。本文详细阐述了PPE技术在国内外的最新研究进展,包括其发展历程与工作原理、在作物育种与性状改良中的应用,及PE技术在大规模基因组编辑和多重基因编辑等领域的拓展。针对PPE系统在植物遗传转化过程中遇到的瓶颈问题,提出了若干解决方案,并展望了PPE技术在植物遗传改良中的广泛应用前景及未来与人工智能(Artificial Intelligence,AI)相结合的研究方向。展开更多
Small signaling peptides,generally comprising fewer than 100 amino acids,act as crucial signaling molecules in cell-to-cell communications.Upon perception by their membrane-localized corresponding receptors or co-rece...Small signaling peptides,generally comprising fewer than 100 amino acids,act as crucial signaling molecules in cell-to-cell communications.Upon perception by their membrane-localized corresponding receptors or co-receptors,these peptide-receptor modules then(de)activate either long-distance or local signaling pathways,thereby orchestrating developmental and adaptive responses via(post)transcriptional,(post)translational,and epigenetic regulations.The physiological functions of small signaling peptides are implicated in a multitude of developmental processes and adaptive responses,including but not limited to,shoot and root morphogenesis,organ abscission,nodulation,Casparian strip formation,pollen development,taproot growth,and various abiotic stress responses such as aluminum,cadmium,drought,cold,and salinity.Additionally,they play a critical role in response to pathogenic invasions.These small signaling peptides also modulate significant agronomic and horticultural traits,such as fruit size,maize kernel development,fiber elongation,and rice awn formation.Here,we underscore the roles of several small signaling peptide families such as CLE,RALF,EPFL,mi PEP,CEP,IDA/IDL,and PSK in regulating these biological processes.These novel insights will deepen our current understanding of small signaling peptides,and offer innovative strategies for genetic breeding stress-tolerant crops and horticultural plants,contributing to establish sustainable agricultural systems.展开更多
文摘植物引导编辑技术(Plant Prime Editing,PPE)为植物基因组的精准改良提供了全新途径,克服了传统基因编辑方法中依赖双链断裂和外源供体DNA的局限性,不仅可以实现任意类型碱基替换,还可以进行小片段乃至大范围片段的精准插入和删除,并且脱靶率较低。本文详细阐述了PPE技术在国内外的最新研究进展,包括其发展历程与工作原理、在作物育种与性状改良中的应用,及PE技术在大规模基因组编辑和多重基因编辑等领域的拓展。针对PPE系统在植物遗传转化过程中遇到的瓶颈问题,提出了若干解决方案,并展望了PPE技术在植物遗传改良中的广泛应用前景及未来与人工智能(Artificial Intelligence,AI)相结合的研究方向。
基金supported by funding from Jiangxi Agricultural University(9232308314 to Huibin Han)Science and Technology Department of Jiangxi Province(20223BCJ25037 to Huibin Han and 20202ACB215002 to Shuaiying Peng)+1 种基金the Outstanding Youth Fund Project of the Natural Science Foundation of Jiangxi Province,China(20242BAB23066 to Yong Zhou)National Natural Science Foundation of China(32060047 to Jianping Liu,32160739 to Youxin Yang,32460797 to Yong Zhou and 32460081 to Huibin Han)。
文摘Small signaling peptides,generally comprising fewer than 100 amino acids,act as crucial signaling molecules in cell-to-cell communications.Upon perception by their membrane-localized corresponding receptors or co-receptors,these peptide-receptor modules then(de)activate either long-distance or local signaling pathways,thereby orchestrating developmental and adaptive responses via(post)transcriptional,(post)translational,and epigenetic regulations.The physiological functions of small signaling peptides are implicated in a multitude of developmental processes and adaptive responses,including but not limited to,shoot and root morphogenesis,organ abscission,nodulation,Casparian strip formation,pollen development,taproot growth,and various abiotic stress responses such as aluminum,cadmium,drought,cold,and salinity.Additionally,they play a critical role in response to pathogenic invasions.These small signaling peptides also modulate significant agronomic and horticultural traits,such as fruit size,maize kernel development,fiber elongation,and rice awn formation.Here,we underscore the roles of several small signaling peptide families such as CLE,RALF,EPFL,mi PEP,CEP,IDA/IDL,and PSK in regulating these biological processes.These novel insights will deepen our current understanding of small signaling peptides,and offer innovative strategies for genetic breeding stress-tolerant crops and horticultural plants,contributing to establish sustainable agricultural systems.