摘要
电力系统中带暂态稳定约束的最优潮流(OTS)问题是一个甚至在小规模电力系统中都难以精确处理的泛函数空间非线性优化问题,文中避开直接处理这一复杂问题.将带暂态稳定约束的潮流优化问题等价转换为欧几里德空间的优化问题,然后采用最优潮流(OPF)中常用的标准非线性规划法来解决此问题。经过转换后的OTS,在形式上和OPF有相同的变量,这样即使对于一个存在众多暂态稳定约束和多个扰动的大型电力系统,也变得容易求解。所提出的方法可以适用于任何发电机系统、控制器或者输电网络模型,不仅可以直接用于计算系统最优运行点,还可以应用于电力市场内电价的精确估价以及预防性稳定控制、电压下降问题和可用传输容量计算等领域。
OTS (optimal power flow with transient stability constraints) is a nonlinear optimization problem in functional space that is not easy to deal with precisely even for small-scale power systems. Instead of directly tackling this tricky problem, this paper converts OTS equivalently into an optimization problem in the Euclidean space, which can be solved by any standard nonlinear programming techniques adopted by OPF (optimal power flow). The transformed OTS problem has the same variables as those of OPF in form, and is tractable even for the large-scale power systems with a large number of transient stability constraints.
出处
《电力系统自动化》
EI
CSCD
北大核心
2004年第10期8-13,共6页
Automation of Electric Power Systems
关键词
暂态稳定
最优潮流
可用传输容量
电力市场
非线性优化
电压降
经济调度问题
transient stability
optimal power flow
available transfer capability
electricity market
nonlinear optimization
voltage dip
economic load dispatch