期刊文献+

电力系统稳定器参数优化的改进算法 被引量:1

Improved Approach to Parameter Optimization of Power System Stabilizer
原文传递
导出
摘要 在多机系统多运行方式下,用非线性规划方法进行电力系统稳定器(PSS)参数优化时,特征根的稳定程度会随着参数的调整而不断变化,以致收敛过程中存在振荡现象。为减缓振荡,对非线性规划目标函数进行了改进,增加了优化过程中所计及的特征根数量,并根据各特征根的稳定程度选择相应的权重系数,大幅度减少了优化计算的迭代次数。在一个8机系统的算例上进行试算的结果表明,改进后的算法可有效改善迭代过程的收敛特性。 When the nonlinear programming approach is used to optimize parameters of power system stabilizer(PSS) under multiply operating conditions in a multi-machine system, eigenvalues stability degree will vary with parameter's adjusting. Due to this, there is oscillation phenomenon in the convergence process. To weaken the phenomenon, the objective function of the optimization problem is modified, and the eigenvalue number considered in the optimization process is increased. The weighting coefficients are selected according to the stabilization degree of eigenvalues, and the computational requirement is greatly reduced. Testing computation based on an eight-machine system shows that the convergence property is largely improved.
作者 吉平 王克文
出处 《现代电力》 2008年第4期25-30,共6页 Modern Electric Power
关键词 特征根 非线性规划法 电力系统稳定器(PSS) 参数优化 权重系数 eigenvalue nonlinear programming method power system stabilizer (PSS) parameter optimization weighting coefficient
  • 相关文献

参考文献11

  • 1Tse C T, Tso S K. Design optimization of power system stabilizers based on modal and eigenvalue- sensitivity analyses [ J ]. IEE Proc:gener. TransrrL Distrib. , 1988, 135(5): 406-415.
  • 2Gibbard M J, BSc. Coordinated design of multimachine system stabilizer based on damping torque concepts[J]. IEE Proc.-C, 1988, 135(4): 276- 284.
  • 3马林,廖培金,彭书涛.小干扰稳定中特征值对运行参数的灵敏度[J].电力系统及其自动化学报,2005,17(4):31-35. 被引量:21
  • 4Tse C T, Wang K W, Chung C Y, et al. Robust PSS design by probabilistic eigenvalue sensitivity analysis [J]. Electric Power System Research, 2001, 59(1): 47-54.
  • 5Voumas C D, Papadias B C. Power system stabilization via parameters optimization application to the Hellenic Interconnected system[J].IEEE Trans. on Power Systems, 1987, 2(3) : 615 - 622.
  • 6Maslennikov V A, Ustinov S M. Method and software for coordinated tuning of power system regulators [J]. IEEE Transactions on Power Systems, 1997, 12(4):1419-1424.
  • 7Tse C T, Wang K W, Chung C Y, et al. Parameter optimization of robust power system stabilizers by probabilistic approach[J].IEE Pro. -Gener. Transm. and Distrib, 2000, 147(2): 69-75.
  • 8Chung C Y, Wang K W, Tse C T, et al. Probabilistic Eigenvalue Sensitivity Analysis and PSS Design in Multimaehine Systems[J]. IEEE Transactions on Power Systems, 2003, 18(4):1439 - 1445.
  • 9Chung C Y, Wang K W, Tse C T, et al. Powersystem stabilizer (PSS) design by probabilistie sensitivity indexes (PSIs)[J]. IEEE Transactions on power systems, 2002, 17(3) : 688- 693.
  • 10Wang K W, Chung C Y, Tse C T, et al. Multimachine eigenvalue sensitivities of power system parameter[J]. IEEE Transactions on Power Systems, 2000, 15(2):741 - 747.

二级参考文献8

  • 1Wang K W,Chung C Y,Tse C T,et al .Multimachi-ne eigenvalue sensitivities of power system paramete-rs[J].IEEE Trans on Power Systems,2000,15(2):741-747.
  • 2Venkataramana Ajjarapu.Reducibility and eigenvalue sensitivity for identifying critical generators in multimachine power systems[J].IEEE Trans on Power Systems,1990,5(3):712-719.
  • 3Thomas Smed.Feasible eigenvalue sensitivity for la-rge power systems[J].IEEE Trans on Power Syste-ms,1993,8(2):555-562.
  • 4Lima E E S.A sensitivity analysis of engenstructures[J].IEEE Trans on Power Systems,1997,12(3):1393-1399.
  • 5Makarov Y V,Popovic D H,David J H.Stabilization of transient process in power systems by an eigenvalue shift approach[J].IEEE Trans on Power Systems,1998,13(2):382-388.
  • 6Van Ness J E,Boyle J M,Imad F P.Sensitivities of large multiple-loop control systems[J].IEEE Trans on Automatic Control,1965,10(7):308-315.
  • 7Pagola F L,Perez-Arriaga I J,Verghese G C.On sensitivities,residues and participations:applications to oscillatory stability analysis and control[J].IEEE Trans on Power Systems,1989,4(1):278-285.
  • 8Bueno de Araujo P,Xanetta L C.Pole placement method using the system matrix transfer function and sparsity[J].Electrical Power and Energy Systems,2001,23(3):173-178.

共引文献20

同被引文献9

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部