期刊文献+

一种利用分块统计的虹膜定位算法 被引量:4

An Algorithm for Iris Localization Using Block Statistic
在线阅读 下载PDF
导出
摘要 虹膜识别是一种新兴的生物特征识别技术 ,而虹膜定位是虹膜识别的重要步骤 ,因而精确而快速地进行虹膜定位是有效地进行虹膜识别的重要前提。为了能够快速地进行虹膜定位 ,在简要介绍现有的虹膜定位算法的基础上 ,提出了一种新的利用分块统计的虹膜定位算法。由于虹膜边缘可以简单地用圆周描述 ,因此 ,该算法第 1步先阈值化分割图像 ,以分别建立虹膜和瞳孔的二进制位图 ;第 2步用游长编码的方法来寻找最大色块的质心 ,并计算边界点到质心距离的均值。实验结果表明 ,对于虹膜定位而言 。 Iris recognition is an emerging biometric technology for personal identification, whereas iris localization is a crucial part in the process of iris recognition,thus obtaining the iris localization precisely and fleetly is the prelude of effective iris localization . For the purpose of localizing iris precisely, this paper puts forward a novel algorithm of iris localization using block statistic while based on introducing some prevailing algorithms for iris localization. The boundaries that delimit iris can be modeled in a simple way with circular contours. Therefore ,the first step in the paper consists of thresholding the iris image intensity to build two binary bitmaps for the succeeding image procession, one for the whole iris and the other for the pupil. The second step is to search for the centroid of the largest block in the iris binary bitmaps by means of Run Length Encoding (RLE), and calculate the average distance from each point of the boundaries to the centroid obtained before. Experiments show that the algorithm is efficient and successful for the purpose of iris localizing.
出处 《中国图象图形学报(A辑)》 CSCD 北大核心 2004年第1期35-39,共5页 Journal of Image and Graphics
关键词 虹膜识别 虹膜定位 生物特征识别 分块统计 虹膜图像 Iris recognition, Iris localization, Biometrics
  • 相关文献

参考文献8

  • 1Daugman J G. Complete discrete 2-D Gabor transform by neural networks for image analysis and compression [J]. IEEE Transactions on Acoustic, Speech and Signal Processing, 1988,36(7): 1169-1179.
  • 2严民军,汪云九.虹膜的计算机识别原理[J].生物化学与生物物理进展,2000,27(4):348-350. 被引量:20
  • 3Daugman J G. High confidence personal identification by rapid video analysis of iris texture [A]. In: Proceedings IEEE International Canrnahan Conference Security Technology [C],Tannan, Tanwan, China, 1992:1-11.
  • 4Daugman J G. Biometric personal identification system based on iris analysis[P]. U.S. Patent 5 291560, 1994.
  • 5Wildes R P. Automated iris recognition: An emerging biometric technology [J]. Proceedings of the IEEE, 1997,85 (9) : 1348-1363.
  • 6Wildes R P, Asmuth J C, Green G L, et al. A system for automated iris recognition [A]. In Proceedings of the IEEE Workshop on Applications of Computer Vision[C], Sarasota,FL, USA,1994:121-128.
  • 7Wildes R P, Asmuth J C, Green G L, et al. A machine vision system for iris recognition[J]. Machine Vision and Applications,1996,9(9): 1-8.
  • 8何家峰,廖曙铮,叶虎年,李柱.虹膜定位[J].中国图象图形学报(A辑),2000,5(3):253-255. 被引量:78

二级参考文献4

  • 11,Flom et al. Iris recognition system. US Patent 4641349. 1987.
  • 22,Daugman J. Biometric personal identification system based on iris analysis. U S, Patent 5291560. 1994.
  • 34,Wildes et al. Automated, Non-invasive iris recognition system and method . US, Patent 5572596. 1996.
  • 4Richard P. Wildes,Jane C. Asmuth,Gilbert L. Green,Steven C. Hsu,Raymond J. Kolczynski,James R. Matey,Sterling E. McBride. A machine-vision system for iris recognition[J] 1996,Machine Vision and Applications(1):1~8

共引文献90

同被引文献39

引证文献4

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部